APM  Vol.4 No.9 , September 2014
A Simple and General Proof of Beal’s Conjecture (I)
ABSTRACT
Using the same method that we used in [1] to prove Fermat’s Last Theorem in a simpler and truly marvellous way, we demonstrate that Beal’s Conjecture yields—in the simplest imaginable manner, to our effort to prove it.

Cite this paper
Nyambuya, G. (2014) A Simple and General Proof of Beal’s Conjecture (I). Advances in Pure Mathematics, 4, 518-521. doi: 10.4236/apm.2014.49059.
References
[1]   Nyambuya, G.G. (2014) On a Simpler, Much More General and Truly Marvellous Proof of Fermat’s Last Theorem (I).
http://vixra.org/abs/1309.0154

[2]   Daniel Mauldin, R. (1997) A Generalization of Fermat’s Last Theorem: The Beal Conjecture and Prize Problem. Notices of the American Mathematical Society, 44, 1436-1439.

[3]   Wiles, A. (1995) Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics, 141, 443-551.
http://dx.doi.org/10.2307/2118559

[4]   Poonen, B., Schaefer, E.F. and Stoll, M. (2007) Twists of X(7) and Primitive Solutions to x2 + y3 = z7. Duke Mathematical Journal, 137, 103-158. http://dx.doi.org/10.1215/S0012-7094-07-13714-1

[5]   Crandall, R. and Pomerance, C. (2000) Prime Numbers: A Computational Perspective. Spinger Science & Business Media, Berlin, 147.

[6]   Siksek, S. and Stoll, M. (2014) The Generalised Fermat Equation x2 + y3 = z15. Archiv der Mathematik, 102, 411-421.
http://dx.doi.org/10.1007/s00013-014-0639-z

[7]   Dahmen, S.R. and Siksek, S. (2014) Perfect Powers Expressible as Sums of Two Fifth or Seventh Powers. arXiv: 1309.4030v2.

[8]   Darmon, H. and Granville, A. (1995) On the Equations zm = F(x, y) and Axp + Byq = Czr. Bulletin of the London Mathematical Society, 27, 513-543. http://dx.doi.org/10.1112/blms/27.6.513

[9]   Thiagarajan, R.C. (2014) A Proof to Beal’s Conjecture. Bulletin of Mathematical Sciences & Applications, 89-93.

[10]   Nyambuya, G.G. (2014) On a Simpler, Much More General and Truly Marvellous Proof of Fermat’s Last Theorem (II).
http://vixra.org/abs/1405.0023

 
 
Top