On the Initial Subalgebra of a Graded Lie Algebra

Show more

References

[1] Kostrikin, A.I. and Shafarevich, I.R. (1969) Graded Lie Algebras of Finite Growth. Mathematics of the USSR-Izvestiya, 3, 237-304. (English)

[2] Premet, A. and Strade, H. (2006) Classification of Finite-Dimensional Simple Lie Algebras in Prime Characteristics. arXiv: math/0601380v2 [math. RA].

[3] Skryabin, S.M. (1992) New Series of Simple Lie Algebras of Characteristic 3. Russian Academy of Sciences Sbornik Mathematics, 70, 389-406. (English)

[4] Benkart, G.M., Kostrikin, A.I. and Kuznetsov, M.I. (1996) The Simple Graded Lie Algebras of Characteristic Three with Classical Reductive Component L0. Communications in Algebra, 24, 223-234.

http://dx.doi.org/10.1080/00927879608825563

[5] Benkart, G.M., Gregory, T.B. and Kuznetsov, M.I. (1998) On Graded Lie Algebras of Characteristic Three with Classical Reductive Null Component. In: Ferrar, J.C. and Harada, K., Eds., The Monsteer and Lie Algebras, Vol. 7, Ohio State University Mathematical Research Publications, 149-164.

[6] Gregory, T.B. and Kuznetsov, M.I. (2004) On Depth-Three Graded Lie Algebras of Characteristic Three with Classical Reductive Null Component. Communications in Algebra, 32, 3339-3371.

http://dx.doi.org/10.1081/AGB-120039401

[7] Gregory, T.B. and Kuznetsov, M.I. On Graded Lie Algebras of Characteristic Three with Classical Reductive Null Component. (In Preparation)

[8] Weisfeiler, B.J. (1978) On the Structure of the Minimal Ideal of Some Graded Lie Algebras in Characteristic p > 0. Journal of Algebra, 53, 344-361. http://dx.doi.org/10.1016/0021-8693(78)90280-6

[9] Benkart, G.M. and Gregory, T.B. (1989) Graded Lie Algebras with Classical Reductive Null Component. Mathematische Annalen, 285, 85-98. http://wdx.doi.org/10.1007/BF01442673

[10] Jacobson, N. (1962) Lie Algebras, Tracts in Mathematics. Vol. 10, Interscience, New York.