MSA  Vol.5 No.11 , September 2014
LiB Electrode Ageing Observed from PVdF Binder
ABSTRACT
Ageing behaviors of the positive electrode of lithium ion battery are characterized by measuring mechanical properties of the electrode reeds, such as resonance frequency and internal friction, as a function of temperature. In the measurements of the electrode reeds with a sandwich structure of active material film and current collector of Al foil, two thermally-activated relaxation processes can be observed on the polyvinylidene difluoride binder in the active material film. Namely, a surface-related relaxation at ~150 K and a relaxation corresponding to the β-phase transition at ~240 K in the polymer binder can be observed at high signal/noise ratio. The resonance frequency decreases and the internal friction increases after charge/discharge cycling. The changes in activation energies of the relaxation processes also indicate that the measurement of mechanical properties of the positive electrode is an effective method for characterizing ageing behaviors of the positive electrode as a whole.

Cite this paper
Sakaino, M. , Hatake, S. , Sun, Y. , Morimoto, F. , Kirimoto, K. (2014) LiB Electrode Ageing Observed from PVdF Binder. Materials Sciences and Applications, 5, 767-782. doi: 10.4236/msa.2014.511077.
References
[1]   Scrosati, B. and Garche, J. (2010) Lithium Batteries: Status, Prospects and Future. Journal of Power Sources, 195, 2419-2430.
http://dx.doi.org/10.1016/j.jpowsour.2009.11.048

[2]   Broussely, M., Biensan, Ph., Bonhomme, F., Blanchard, Ph., Herreyre, S., Nechev, K. and Staniewicz, R.J. (2005) Main Aging Mechanisms in Li Ion Batteries. Journal of Power Sources, 146, 90-96.
http://dx.doi.org/10.1016/j.jpowsour.2005.03.172

[3]   Barre, A., Deguilhem, B., Grolleau, S., Gerard, M., Suard, F. and Riu, D. (2005) A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications. Journal of Power Sources, 241, 680-689.
http://dx.doi.org/10.1016/j.jpowsour.2013.05.040

[4]   Vetter, J., Novak, P., Wagner, M.R., Veit, C., Moller, K.C., Besenhard, J.O., Winter, M., Mehrens, M.W., Vogler, C. and Hammouche, A. (2005) Ageing Mechanisms in Lithium-Ion Batteries. Journal of Power Sources, 147, 269-281.
http://dx.doi.org/10.1016/j.jpowsour.2005.01.006

[5]   Meissner, E. and Richter, G. (2005) The Challenge to The Automotive Battery Industry: The Battery Has to Become an Increasingly Integrated Component within The Vehicle Electric Power System. Journal of Power Sources, 144, 438460.
http://dx.doi.org/10.1016/j.jpowsour.2004.10.031

[6]   Sarre, G., Blanchard, P. and Broussely, M. (2004) Aging of Lithium-Ion Batteries. Journal of Power Sources, 127, 6571.
http://dx.doi.org/10.1016/j.jpowsour.2003.09.008

[7]   Spotnitz, R. (2003) Simulation of Capacity Fade in Lithium-Ion Batteries. Journal of Power Sources, 113, 72-80.
http://dx.doi.org/10.1016/S0378-7753(02)00490-1

[8]   Arora, P., White, R.E. and Doyle, M. (1998) Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. Journal of the Electrochemical Society, 145, 3647-3667.
http://dx.doi.org/10.1149/1.1838857

[9]   Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K. and Staniewicz, R.J. (2001) Aging Mechanism in Li Ion Cells and Calendar Life Predictions. Journal of Power Sources, 97-98, 13-21.
http://dx.doi.org/10.1016/S0378-7753(01)00722-4

[10]   Markosky, B., Rodkin, A., Cohen, Y.S., Palchik, O., Levi, E., Aurbach, D., Kim, H.J. and Schmidt, M. (2003) The Study of Capacity Fading Processes of Li-Ion Batteries: Major Factors That Play a Role. Journal of Power Sources, 119-121, 504-510.
http://dx.doi.org/10.1016/S0378-7753(03)00274-X

[11]   Raijmakersa, L.H.J., Danilova, D.L., van Lammerenb, J.P.M., Lammersb, M.J.G. and Notten, P.H.L. (2014) Sensorless Battery Temperature Measurements Based on Electrochemical Impedance Spectroscopy. Journal of Power Sources, 247, 539-544.
http://dx.doi.org/10.1016/j.jpowsour.2013.09.005

[12]   Troltzsch, U., Kanoun, O. and Trankler, H.R. (2006) Characterizing Aging Effects of Lithium Ion Batteries by Impedance Spectroscopy. Electrochimica Acta, 51, 1664-1672.
http://dx.doi.org/10.1016/j.electacta.2005.02.148

[13]   Song, J.Y., Lee, H.H., Wang, Y.Y. and Wan, C.C. (2002) Twoand Three-Electrode Impedance Spectroscopy of LithiumIon Batteries. Journal of Power Sources, 111, 255-267.
http://dx.doi.org/10.1016/S0378-7753(02)00310-5

[14]   Levi, M.D., Salitra, G., Markovsky, B., Teller, H., Aurbach, D., Heider, U. and Heider, L. (1999) Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Li1-xCoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT and EIS. Journal of the Electrochemical Society, 146, 1279-1289.
http://dx.doi.org/10.1149/1.1391759

[15]   Rodrigues, S., Munichandraiah, N. and Shukla, A.K. (1999) AC Impedance and State-of-Charge Analysis of a Sealed Lithium-Ion Rechargeable Battery. Journal of Solid State Electrochemistry, 3, 397-405.
http://dx.doi.org/10.1007/s100080050173

[16]   Callens, A., Batist, R.D. and Eersels, L. (1976) Relaxational Behaviour of Polyvinylidene Fluoride. Il Nuovo Cimento B, 33, 434-446.

[17]   Callens, A., Eersels, L. and Batist, R.D. (1978) Low Temperature Internal Friction on γ-Irradiated Polyvinylidene Fluoride (PVDF). Journal of Materials Science, 13, 1887-1900.

[18]   Gregorio, J.R. and Capitao, R.C. (2000) Morphology and Phase Transition of High Melt Temperature Crystallized Poly(vinylidene fluoride). Journal of Materials Science, 35, 299-306.
http://dx.doi.org/10.1023/A:1004737000016

[19]   Kim, B.S., Lee, J.Y. and Porter, R.S. (1998) The Crystalline Phase Transformation of Poly(vinylidene fluoride)/ Poly(vinyl fluoride) Blend Films. Polymer Engineering Science, 38, 1359-1365.
http://dx.doi.org/10.1002/pen.10306

[20]   Samara, G.A. (1992) Pressure Dependence of the β Molecular Relaxation Process and Dielectric Properties of Polyvinylidene Fluoride. Journal of Polymer Science Part B: Polymer Physics, 30, 669-679.
http://dx.doi.org/10.1002/polb.1992.090300703

[21]   Sajkiewicz, P. (1999) Crystallization Behaviour of Poly(vinylidene fluoride). European Polymer Journal, 35, 15811590.
http://dx.doi.org/10.1016/S0014-3057(98)00242-0

[22]   Hsu, T.C. and Geil, P.H. (1989) Deformation and Transformation Mechanisms of Poly(vinylidene fluoride) (PVF2). Journal of Materials Science, 24, 1219-1232.
http://dx.doi.org/10.1007/BF02397050

[23]   Gregorio, J.R. and Ueno, E.M. (1999) Effect of Crystalline Phase, Orientation and Temperature on the Dielectric Properties of Poly(vinylidene fluoride) (PVDF). Journal of Materials Science, 34, 4489-4500.
http://dx.doi.org/10.1023/A:1004689205706

[24]   Sajkiewicz, P. (1994) Effects of an Electrostatic Field on Crystallization of Poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32, 313-323.
http://dx.doi.org/10.1002/polb.1994.090320213

[25]   Sajkiewicz, P., Wasiak, A. and Goclowski, Z. (1999) Phase Transitions during Stretching of Poly(vinylidene fluoride). European Polymer Journal, 35, 423-429.
http://dx.doi.org/10.1016/S0014-3057(98)00136-0

[26]   Guney, H.Y. (2005) Elastic Properties and Mechanical Relaxation Behaviors of PVDF (Poly(vinylidene fluoride)) at Temperatures between -20°C and 100°C and at 2 MHz Ultrasonic Frequency. Journal of Polymer Science Part B: Polymer Physics, 43, 2862-2873.
http://dx.doi.org/10.1002/polb.20591

[27]   Vinogradov, A.M. and Holloway, F. (2000) Dynamic Mechanical Testing of the Creep and Relaxation Properties of Polyvinylidene Fluoride. Polymer Testing, 19, 131-142.
http://dx.doi.org/10.1016/S0142-9418(98)00079-8

[28]   Linares, A. and Acosta, J.L. (1996) Dynamic Mechanical Properties of Binary and Ternary Blends Based on PVDF. Polymer Bulletin, 36, 241-247.
http://dx.doi.org/10.1007/BF00294913

[29]   Mohajir, B.E. and Heymans, N. (2001) Changes in Structural and Mechanical Behavior of PVDF with Processing and Thermomechanical Treatments. 1. Change in Structure. Polymer, 42, 5661-5667.
http://dx.doi.org/10.1016/S0032-3861(01)00064-7

[30]   Sencadas, V., Mendez, S.L., Serra, R.S., Balado, A.A. and Ribelles, J.L.G. (2012) Relaxation Dynamics of Poly(vinylidene fluoride) Studied by Dynamical Mechanical Measurements and Dielectric Spectroscopy. The European Physical Journal E, 35, 41.
http://dx.doi.org/10.1140/epje/i2012-12041-x

[31]   Mano, J.F., Sencadas, V., Costa, A.M. and Lanceros-Mendez, S. (2004) Dynamic Mechanical Analysis and Creep Behaviour of β-PVDF Films. Materials Science and Engineering: A, 370, 336-340.
http://dx.doi.org/10.1016/j.msea.2002.12.002

[32]   Ozkazanc, E., Guney, H.Y., Oskay, T. and Tarcan, E. (2008) The Effect of Uniaxial Orientation on the Dielectric Relaxation Behavior of α-PVDF. Journal of Applied Polymer Science, 109, 3878-3886.
http://dx.doi.org/10.1002/app.28617

[33]   Gregorio, R. and Cestari Jr., M. (1994) Effect of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32, 859-870.
http://dx.doi.org/10.1002/polb.1994.090320509

[34]   Rodriguez-Carvajal, J., Rousse, G., Masquelier, C. and Hervieu, M. (1998) Electronic Crystallization in a Lithium Battery Material: Columnar Ordering of Electrons and Holes in the Spinel LiMn2O4. Physical Review Letters, 81, 4660-4663.
http://dx.doi.org/10.1103/PhysRevLett.81.4660

[35]   Yamada, A. and Tanaka, M. (1995) Jahn-Teller Structural Phase Transition around 280 K in LiMn2O4. Materials Research Bulletin, 30, 715-721.
http://dx.doi.org/10.1016/0025-5408(95)00048-8

[36]   Rousse, G., Masquelier, C., Rodriguez-Carvajal, J. and Hervieu, M. (1999) Cubic - Orthorhombic Transition in the Stoichiometric Spinel LiMn2O4. Electrochemical and Solid-State Letters, 2, 6-8.
http://dx.doi.org/10.1149/1.1390716

[37]   Paolone, A., Roy, P., Rousse, G., Masquelier, C. and Rodriguez-Carvajal, J. (1999) Infrared Spectroscopy Investigation of the Charge Ordering Transition in LiMn2O4. Solid State Communications, 111, 453-458.
http://dx.doi.org/10.1016/S0038-1098(99)00208-2

[38]   Rousse, G., Masquelier, C., Rodriguez-Carvajal, J., Elkaim, E., Lauriat, J.P. and Martinez, J.L. (1999) X-Ray Study of the Spinel LiMn2O4 at Low Temperatures. Chemistry of Materials, 11, 3629-3635.
http://dx.doi.org/10.1021/cm9910963

[39]   Strobel, P., Cras, F.L., Seguin, L., Anne, M. and Tarascon, J.M. (1998) Oxygen Nonstoichiometry in Li-Mn-O Spinel Oxides: A Powder Neutron Diffraction Study. Journal of Solid State Chemistry, 135, 132-139.
http://dx.doi.org/0.1006/jssc.1997.7611

[40]   Paolone, A., Cantelli, R., Rousse, G., Masquelier, C. and Ferretti, M. (2003) Anelastic Spectroscopy Study of the Charge Order Transition of LiMn2O4. International Journal of Modern Physics B, 17, 799-804.
http://dx.doi.org/10.1142/S0217979203016637

[41]   Paolone, A., Cantelli, R., Rousse, G. and Masquelier, C. (2003) The Charge Order Transition and Elastic/Anelastic Properties of LiMn2O4. Journal of Physics: Condensed Matter, 15, 457-465.
http://dx.doi.org/10.1088/0953-8984/15/3/310

[42]   Sugiyama, J., Tamura, T. and Yamauchi, H. (1995) Elastic/Anelastic Behavior during the Phase Transition in Spinel LiMn2O4. Journal of Physics: Condensed Matter, 7, 9755-9764.
http://dx.doi.org/10.1088/0953-8984/7/50/010

[43]   Liu, Y., Sun, Y., Zeng, F., Liu, J. and Ge, J. (2013) Effect of POSS Nanofiller on Structure, Thermal and Mechanical Properties of PVDF Matrix. Journal of Nanoparticle Research, 15, 2116.
http://dx.doi.org/10.1007/s11051-013-2116-1

[44]   Amanieu, H., Rosato, D., Sebastiani, M., Massimi, F. and Lupascu, D.C. (2014) Mechanical Property Measurements of Heterogeneous Materials by Selective Nanoindentation: Application to LiMn2O4 Cathode. Materials Science and Engineering: A, 593, 92-102.
http://dx.doi.org/10.1016/j.msea.2013.11.044

[45]   Wang, Q.Z., Lu, D.M., Cui, C.X., Yan, N.J. and Wang, Q. (2013) Fabrication and Internal Friction Behaviors of Novel Porous CuAlMn Shape Memory Alloy Filled with Polystyrene. Materials Letters, 92, 82-85.
http://dx.doi.org/10.1016/j.matlet.2012.10.071

[46]   Wei, J.N., Huang, T.C., Zhao, L., Yu, J.M., Xie, W.J. and Li, G.M. (2008) Internal Friction Characterization of Graphite. Journal of Materials Science, 43, 5470-5473.
http://dx.doi.org/10.1007/s10853-008-2824-6

[47]   Metcalf, T.H., Liu, X., Houston, B.H., Baldwin, J.W., Butler, J.E. and Feygelson, T. (2005) Low Temperature Internal Friction in Nanocrystalline Diamond Films. Applied Physics Letters, 86, Article ID: 081910.
http://dx.doi.org/10.1063/1.1868065

[48]   Liu, X., Metcalf, T.H., Mosaner, P. and Miotello, A. (2005) Microstructure Dependence of Low-Temperature Elastic Properties in Amorphous Diamond like Carbon Films. Physical Review B, 71, Article ID: 155419.
http://dx.doi.org/10.1103/PhysRevB.71.155419

[49]   Li, Y.C., Tjong, S.C. and Li, R.K.Y. (2010) Electrical Conductivity and Dielectric Response of Poly(vinylidene fluoride)—Graphite Nanoplatelet Composites. Synthetic Metals, 160, 1912-1919.
http://dx.doi.org/10.1016/j.synthmet.2010.07.009

[50]   Huang, W., Edenzon, K., Fernandez, L., Razmpour, S., Woodburn, J. and Cebe, P. (2010) Nanocomposites of Poly(vinylidene fluoride) with Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science, 115, 3238-3248.
http://dx.doi.org/10.1002/app.31393

[51]   Hasiguti, R.R., Igata, N. and Kamoshita, G. (1962) Internal Friction Peaks in Cold-Worked Metals. Acta Metallurgica, 10, 442-447.
http://dx.doi.org/10.1016/0001-6160(62)90023-8

[52]   Lax, E. and Filson, D.H. (1959) Second Low-Temperature Peak in the Internal Friction of Aluminum. Physical Review, 114, 1273-1273.
http://dx.doi.org/10.1103/PhysRev.114.1273

[53]   Bruner, L.J. (1960) Low-Temperature Internal Friction in Face-Centered Cubic and Body-Centered Cubic Metals. Physical Review, 118, 399-410.
http://dx.doi.org/10.1103/PhysRev.118.399

[54]   Baxter, W.J. and Wilks, J. (1963) The Effect of Annealing on the Bordoni Peak in Aluminum. Acta Metallurgica, 11, 978-982.
http://dx.doi.org/10.1016/0001-6160(63)90067-1

[55]   Chevalier, J.L., Peguin, P., Perez, J. and Gobin, P. (1972) Frottementintérieur de l’aluminiumtrèsfaiblementécroui. Journal of Physics D: Applied Physics, 5, 777-781.
http://dx.doi.org/10.1088/0022-3727/5/4/319

[56]   Mongy, M., Salama, K. and Beckman, O. (1963) Dislocation Relaxation in Aluminum. Solid State Communications, 1, 234-236.
http://dx.doi.org/10.1016/0038-1098(63)90015-2

[57]   Wei, J.N., Gong, C.L., Cheng, H.F., Zhou, Z.C., Li, Z.B., Shui, J.P. and Han, F.S. (2002) Low-Frequency Damping Behavior of Foamed Commercially Pure Aluminum. Materials Science and Engineering: A, 332, 375-381.
http://dx.doi.org/10.1016/S0921-5093(01)01950-5

[58]   Golyandin, S.N., Sapozhnikov, K.V., Emel’yanov, Y.A., Sinani, A.B., Kustov, S.B. and Robinson, W.H. (1998) Influence of Temperature and Strain on the Amplitude-Dependent Internal Friction of High-Purity Aluminum. Physics of the Solid State, 40, 1667-1671.
http://dx.doi.org/10.1134/1.1130631

 
 
Top