[1] Charney, J.G. and Eliassen, A. (1964) On the Growth of the Hurricane Depression. Journal of the Atmospheric Sciences, 21, 68-75.
http://dx.doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
[2] Gray, W.M. (1968) Global View of the Origin of Tropical Disturbances and Storms. Monthly Weather Review, 96, 669-700. http://dx.doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
[3] Holland, G.J. and Merill, R.T. (1984) On the Dynamics of Tropical Cyclone Structural Changes. Quarterly Journal of the Royal Meteorological Society, 110, 723-745.
http://dx.doi.org/10.1002/qj.49711046510
[4] Craig, G.C. and Gray, S.L. (1996) CISK or WISHE as the Mechanism for Tropical Cyclone Intensification. Journal of the Atmospheric Sciences, 53, 3528-3540. http://dx.doi.org/10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2
[5] Holland, G.J. (1983) Tropical Cyclone Motion: Environmental Interaction plus a Beta Effect. Journal of the Atmospheric Sciences, 40, 328-342.
http://dx.doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2
[6] Pattanayak S. and Mohanty, U.C. (2008) A Comparative Study on Performance of MM5 and WRF Models in Simulation of Tropical Cyclones over Indian Seas. Current Science, 95, 923-936.
[7] Deshpande, M., Pattanaik, S. and Salvekar, P.S. (2010) Impact of Physical Parameterization Schemes on Numerical Simulation of Super Cyclone Gonu. Natural Hazards, 55, 211-231.
http://dx.doi.org/10.1007/s11069-010-9521-x
[8] Deshpande, M., Pattnaik, S. and Salvekar, P.S. (2012) Impact of Cloud Parameterization on the Numerical Simulation of a Super Cyclone. Annales Geophysicae, 30, 775-795.
http://dx.doi.org/10.5194/angeo-30-775-2012
[9] Trivedi, D.K., Mukhopadhyay, P. and Vaidya, S.S. (2006) Impact of Physical Parameterization Schemes on the Numerical Simulation of Orissa Super Cyclone (1999). Mausam, 57, 97-110.
[10] Osuri, K.K., Mohanty, U.C., Routray, A., Kulkarni, M.A. and Mohapatra, M. (2012) Customization of WRF-ARW Model with Physical Parameterization Schemes for the Simulation of Tropical Cyclones over North Indian Ocean. Natural Hazards, 63, 1337-1359. http://dx.doi.org/10.1007/s11069-011-9862-0
[11] Osuri, K.K., Mohanty, U.C., Routray, A., Mohapatra, M. and Nivogi, D. (2013) Real-Time Track Prediction of Tropical Cyclones over the North Indian Ocean Using the ARW Model. Journal of Applied Meteorology and Climatology, 52, 2476-2492. http://dx.doi.org/10.1175/JAMC-D-12-0313.1
[12] Rao, D.V.B., Prasad, D.H. and Srinivas, D. (2009) Impact of Horizontal Resolution and the Advantages of the Nested Domains Approach in the Prediction of Tropical Cyclone Intensification and Movement. Journal of Geophysical Research: Atmospheres, 114, Published Online.
[13] Srinivas, C.V., Venkatesan, R., Rao, D.V.B. and Prasad, D.H. (2007) Numerical Simulation of Andhra Severe Cyclone (2003) Model Sensitivity to Boundary Layer and Convection Parameterization. Pure and Applied Geophysics, 164, 1-23. http://dx.doi.org/10.1007/s00024-007-0228-1
[14] Srinivas, V., Venkatesan, R., Yesubabu, V. and Ramarkrishna, S.S.V.S. (2010) Impact of Assimilation of Conventional and Satellite Meteorological Observations on the Numerical Simulation of a Bay of Bengal Tropical Cyclone of Nov 2008 near Tamilnadu Using WRF Model. Meteorology and Atmospheric Physics, 110, 19-44. http://dx.doi.org/10.1007/s00703-010-0102-z
[15] Raju, P.V.S., Potty, J. and Mohanty, U.C. (2011) Sensitivity of Physical Parameterizations on the Prediction of Tropical Cyclone Nargis over the Bay of Bengal Using WRF Model. Meteorology and Atmospheric Physics, 113, 125-137. http://dx.doi.org/10.1007/s00703-011-0151-y
[16] Mukhopadhyay, P., Taraphdar, S. and Goswami, B.N. (2011) Influence of Moist Processes on Track and Intensity Forecast of Cyclones over the Indian Ocean. Journal of Geophysical Research: Atmospheres, 116, Published Online. http://dx.doi.org/10.1029/2010JD014700
[17] Srinivas, C.V., Rao, D.V.B., Yesubabu, V., Baskarana, R. and Venkatraman, B. (2013) Tropical Cyclone Predictions over the Bay of Bengal Using the High-Resolution Advanced Research Weather Research and Forecasting (ARW) Model. Quarterly Journal of the Royal Meteorological Society, 139, 1810-1825. http://dx.doi.org/10.1002/qj.2064
[18] Li, X. and Pu, Z. (2008) Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations. Monthly Weather Review, 136, 4819-4838. http://dx.doi.org/10.1175/2008MWR2366.1
[19] Efstathiou, G.A., Zoumakis, N.M., Melas, D. and Kassomenos, P. (2012) Impact of Precipitating Ice on the Simulation of a Heavy Rainfall Event with Advanced Research WRF Using Two Bulk Microphysical Schemes. Asia-Pacific Journal of Atmospheric Sciences, 48, 357-368.
http://dx.doi.org/10.1007/s13143-012-0034-2
[20] Tao, W., Shi, J.J., Chen, S.S., Lang, S., Lin, P., Hong, S.Y., Peters-Lidard, C. and Hou, A. (2011) The Impact of Microphysical Schemes on Hurricane Intensity and Track. Asia-Pacific Journal of Atmospheric Sciences, 47, 1-16. http://dx.doi.org/10.1007/s13143-011-1001-z
[21] Kanase, R.D. and Salvekar, P.S. (2011) Numerical Simulation of Severe Cyclonic Storm LAILA (2010): Sensitivity to Initial and Cumulus Parameterization Schemes. Proceedings of Disaster Risk Vulnerability Conference, 1, 165-170.
[22] Skamarock, W.C., Klemp, J.B., Dudhia, J., Gil, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G. (2008) A Description of the Advanced Research WRF Version 3 NCAR Tech. Note NCAR/TN-4751 STR, 1-113. http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf
[23] Betts, A.K. (1986) A New Convective Adjustment Scheme Part I: Observational and Theoretical Basis. Quarterly Journal of the Royal Meteorological Society, 112, Article ID: 677691.
[24] Betts, A.K. and Miller, M.J. (1986) A New Convective Adjustment Scheme Part II: Single Column Tests Using GATE Wave, BOMEX, and Arctic Air Mass Data Sets. Quarterly Journal of the Royal Meteorological Society, 112, 693-709.
[25] Janjic, Z.I. (1994) The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122, 927-945. http://dx.doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[26] Hong, S.Y., Dudhia, J. and Chen, S.H. (2004) A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Cloud and Precipitations. Monthly Weather Review, 132, 103-120. http://dx.doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
[27] Houze, R.A., Hobbs Jr., P.V., Herzegh, P.H. and Parsons, D.B. (1979) Size Distributions of Precipitation Particles in Frontal Clouds. Journal of the Atmospheric Sciences, 36, 156-162.
http://dx.doi.org/10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2
[28] Tripoli, G.J. and Cotton, W.R. (1980) A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida. Journal of Applied Meteorology, 19, 1037-1063. http://dx.doi.org/10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2
[29] Hong, S.Y. and Pan, H.L. (1996) Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Monthly Weather Review, 124, 2322-2339. http://dx.doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
[30] Hong, S.Y. and Lim, J.O.J. (2006) The WRF Single Moment 6 Class Microphysics Scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129-151.
[31] RSMC Report (2010) A Report on Cyclonic Disturbances over North Indian Ocean during 2009. India Meteorological Department, New Delhi.
[32] RSMC Report (2009) A Report on Cyclonic Disturbances over North Indian Ocean during 2003. India Meteorological Department, New Delhi.
[33] RSMC Report (2004) A Report on Cyclonic Disturbances over North Indian Ocean during 2010. India Meteorological Department, New Delhi.
[34] Lord, S.J., Willoughby, H.E. and Piotrowicz, J.M. (1984) Role of a Parameterized Ice-Phase Microphysics in an Axisymmetric, Nonhydrostatic Tropical Cyclone Model. Journal of the Atmospheric Sciences, 41, 2836-2848. http://dx.doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2
[35] Lord, S.J. and Lord, J.M. (1988) Vertical Velocity Structure in an Axisymmetric, Nonhydrostatic Tropical Cyclone Model. Journal of the Atmospheric Sciences, 45, 1453-1461. http://dx.doi.org/10.1175/1520-0469(1988)045<1453:VVSIAA>2.0.CO;2