OJSS  Vol.4 No.9 , September 2014
Denitrification in a Soil under Wheat Crop in the Humid Pampas of Argentina
ABSTRACT
The need to accurately estimate gaseous nitrogen losses from soils is required to have a better understanding of the processes involved as well as soil and environmental conditions, and management practices contributing to these emissions. The objective was to quantify the denitrification rate using undisturbed cores with acetylene, as related to nitrogen (N) fertilization rate in a spring wheat crop (Triticum aestivum L.) under conventional tillage. Soil denitrification losses remained low throughout most of the growing season, when water-filled pore space (WFPS) was below 60%, ranging from 0.79 to 447.3 g N2O-N ha-1•day-1 in the fertilized plot and was less than 47.3 g N2O-N ha-1•day-1 in the control. Denitrification rates were the highest when N fertilizer was applied after frequent and intensive rain. A good correlation was found between the logarithm of the daily denitrification rate and WFPS (r = 0.67, n = 90); however the NO3-N concentration was not a good indicator (r = 0.21, n = 90). Cumulative N2O-N losses by denitrification averaged 3.5 and 0.9 kg N2O-N ha-1 in the fertilized and unfertilized treatment, respectively, during a period of 4 months this difference was not significant. Most N2O-N losses occurred early in the spring; therefore sampling schedules need to focus on this period.

Cite this paper
Picone, L. , Videla, C. , Picaud, C. , García, F. and Rizzalli, R. (2014) Denitrification in a Soil under Wheat Crop in the Humid Pampas of Argentina. Open Journal of Soil Science, 4, 312-322. doi: 10.4236/ojss.2014.49033.
References
[1]   IPCC (2006) Guidelines for National Greenhouse Gas Inventories Third Authors/Experts Meeting: Industrial Processes and Product Use, Washington D.C., 27-29 July 2004.

[2]   Firestone, M.K. and Davidson, E.A. (1989) Microbiological Basis of NO and N2O Production and Consumption in Soils. In: Andreae, M.O. and Schimel, D.S., Eds., Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, John Willey and Sons, New York, 7-21.

[3]   Bateman, E.J. and Baggs, E.M. (2005) Contributions of Nitrification and Denitrification to N2O Emissions from Soils at Different Water-Filled Pore Space. Biology and Fertility of Soils, 41, 379-388.
http://dx.doi.org/10.1007/s00374-005-0858-3

[4]   Drury, C.F., Zhang, T.Q. and Kay, B.D. (2003) The Non-Limiting and Least Limiting Water Ranges for Soil Nitrogen Mineralization. Soil Science Society of American Journal, 67, 1388-1404.
http://dx.doi.org/10.2136/sssaj2003.1388

[5]   Parton, W.J., Mosier, A.R. and Schimel, D.S. (1988) Rates and Pathways of Nitrous Oxide Production in a Shortgrass Steppe. Biogeochemistry, 6, 45-48.
http://dx.doi.org/10.1007/BF00002932

[6]   Skiba, U., Smith, K.A. and Fowler, D. (1993) Nitrification and Denitrification as Sources of Nitric Oxide and Nitrous Oxide in a Sandy Loam Soil. Soil Biology and Biochemistry, 25, 1527-1536.
http://dx.doi.org/10.1016/0038-0717(93)90007-X

[7]   Coyne, M.S. (2008) Biological Denitrification. In: Schepers, J.S. and Raun, W.R., Eds., Nitrogen in Agricultural Systems, American Society of Agronomy, Crop Science Society of America. Soil Science Society of America, Madison, 202-254.
http://dx.doi.org/10.2134/agronmonogr49.c7

[8]   Firestone, M.K. (1982) Biological Denitrification. In: Stevenson, F.J., Ed., Nitrogen Agricultural Soils. Agron. Monogr. 22. American Society Agronomy, Crop Science Society of America and Soil Science Society of American, Madison, 289-326.

[9]   Grant, R.F., Pattey, E., Goddard, T.W., Kryzanowski, L.M. and Puurveen, H. (2006) Modeling the Effects of Fertilizer Application Rate on Nitrous Oxide Emissions. Soil Science Society of American Journal, 70, 235-248.
http://dx.doi.org/10.2136/sssaj2005.0104

[10]   Sainz Rozas, H., Echeverría, H.E. and Picone, L.I. (2001) Denitrification in Maize No-Tillage: Effect of Nitrogen Rate and Application Time. Soil Science Society of American Journal, 65, 1314-1323.
http://dx.doi.org/10.2136/sssaj2001.6541314x

[11]   Skiba, U., Fowler, D. and Smith, K. (1994) Emissions of NO and N2O from Soils. Environmental Monitoring and Assessment, 31, 153-158.
http://dx.doi.org/10.1007/BF00547191

[12]   Stehfest, E. and Bouwman, L. (2006) N2O and NO Emission from Agricultural Fields and Soils under Natural Vegetation: Summarizing Available Measurement Data and Modeling of Global Annual Emissions. Nutrient Cycling in Agroecosystems, 74, 207-228.
http://dx.doi.org/10.1007/s10705-006-9000-7

[13]   Zhang, Y.M., Chen, D.L., Zhang, J.B., Edis, R., Hu, C.S. and Zhu, A.N. (2004) Ammonia Volatilization and Denitrification Losses from an Irrigated Maize-Wheat Rotation Field in the North China Plain. Pedosphere, 14, 533-540.

[14]   Elmi, A.A., Astatkie, T., Madramootoo, C., Gordon, R. and Burton, D. (2005) Assessment of Denitrification Gaseous End Products in the Soil Profile under Two Water Table Management Practices Using Repeated Measures Analysis. Journal of Environmental Quality, 34, 446-454.
http://dx.doi.org/10.2134/jeq2005.0446

[15]   Satorre, E.H. and Slafer, G.A. (1999) Wheat Production Systems of the Pampas. In: Wheat: Ecology and Physiology of Yield Determination, Food Products Press, New York, 333-348.

[16]   Reussi Calvo, N., Sainz Rozas, H., Echeverría, H. and Berardo, A. (2013) Contribution of Anaerobically Incubated Nitrogen to the Diagnosis of Nitrogen Status in Spring Wheat. Agronomy Journal, 105, 321-328.
http://dx.doi.org/10.2134/agronj2012.0287

[17]   Barbieri, P.A., Rozas, H.S. and Echeverría, H.E. (2008) Time of Nitrogen Application Affects Nitrogen Use Efficiency of Wheat in the Humid Pampas of Argentina. Canadian Journal of Plant Science, 88, 849-857.
http://dx.doi.org/10.4141/CJPS07026

[18]   Calvi?o, P.A. and Sadras, V.O. (2002) On-Farm Assessment of Constraints to Wheat Yield in the South-Eastern Pampas. Field Crops Research, 74, 1-11.
http://dx.doi.org/10.1016/S0378-4290(01)00193-9

[19]   Gobierno Argentino (2007) Segunda Comunicación Nacional del Gobierno Argentino a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Proyecto BIRF No. TFO51287.
http://www.fundacionbariloche.org.ar

[20]   Taboada, M.A. and Cosentino, V.R.N. (2012) Emisión de óxido nitroso (N20) desde suelos agrícolas. XIX Congreso Latino Americano de la ciencia del suelo, XXIII Congreso argentino de la Ciencia del suelo, 16-20 abril 2012, Resumen en actas.

[21]   Yoshinari, T., Hynes, R. and Knowles, R. (1977) Acetylene Inhibition of Nitrous Oxide Reduction and Measurement of Denitrification and Nitrogen Fixation in Soil. Soil Biology and Biochemistry, 9, 177-183.
http://dx.doi.org/10.1016/0038-0717(77)90072-4

[22]   Tiedje, J.M. (1982) Denitrification. In: Page, A.L., Ed., Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties, Agron. Monogr. 9, American Society of Agronomy and Soil Science Society American, Madison, 1011-1026.

[23]   Keeney, D.R. and Nelson, D.W. (1982) Nitrogen Inorganic Forms. In: Page, A.L., Ed., Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Science of Agronomy and Soil Science Society of America, Madison, 643-693.

[24]   Mebius, L.J. (1960) A Rapid Method for the Determination of Organic Carbon in Soil. Analytica Chimica Acta, 22, 120-124.
http://dx.doi.org/10.1016/S0003-2670(00)88254-9

[25]   Blake, G.R. and Hartge, K.H. (1986) Bulk Density. In: Klute, A., Ed., Methods of Soil Analysis, Part 1, 2nd Edition, Agron. Monogr. 9, American Society of Agronomy and Soil Science Society of America, Madison, 363-375.

[26]   Shapiro, S.S. and Wilk, M.B. (1965) An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52, 591-611.
http://dx.doi.org/10.1093/biomet/52.3-4.591

[27]   SAS Institute Inc. (1988) User’s Guide: Statistics. Version 6.03 ed. SAS/STAT. SAS Inst., Cary.

[28]   Videla, C.C., Ferrari, J.L., Echeverria, H.E. and Travasso, M.I. (1996) Transformaciones del nitrógeno en el cultivo de trigo. Ciencia del suelo, 14, 1-6.

[29]   García, F. and Fabrizzi, K. (2001) Dinámica del nitrógeno en ecosistemas agrícolas: Efecto de la siembra directa. Siembra directa en el Cono Sur. Programa cooperativo para el desarrollo tecnológico agroalimentario y agroindustrial del Cono Sur. Instituto Interamericano de Cooperación para la Agricultura, Procisur, Montevideo, 299-323.

[30]   Ferrari, M.H. (1995) Hidrólisis de la urea en suelos de la region pampeana. Tesis Ing. Agr. Facultad de Ciencias Agrarias, UNMdP, Balcarce.

[31]   Navarro, C.A., Echeverría, H.E., Gonzalez, N.S. and Iglesias, M.A. (1980) Cinética de las reacciones de amonificación y nitrificación en algunos suelos de Argentina. IX Reunión Argentina de la Ciencia del Suelo, 15 al 20 septiembre 1980, 431-437.

[32]   Abbate, P.E. and Andrade, F.H. (2006) Los nutrientes del suelo y la determinación del rendimiento de los cultivos de grano. In: Echeverría, H.E. and García, F.O., Eds., Fertilidad de suelos y fertilización de cultivos, Editorial INTA, 43-65.

[33]   Baethgen, W.E. and Alley, M.M. (1989) Optimizing Soil and Fertilizer Nitrogen Use for Intensively Managed Winter Wheat. I. Crop Nitrogen Uptake. Agronomy Journal, 81, 116-120.

[34]   Linn, D.M. and Doran, J.W. (1984) Effect of Water Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Non-Tilled Soils. Soil Science Society of America Journal, 48, 1267-1272.
http://dx.doi.org/10.2136/sssaj1984.03615995004800060013x

[35]   Neff, J.C. and Asner, G.P. (2001) Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model. Ecosystems, 4, 29-48.
http://dx.doi.org/10.1007/s100210000058

[36]   Hénault, C., Grossel, A., Mary, B., Roussel, M. and Léonard, J. (2012) Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere, 22, 426-433.
http://dx.doi.org/10.1016/S1002-0160(12)60029-0

[37]   Mathieu, O., Lévêque, J., Hénault, C., Milloux, M.J., Bizouard, F. and Andreux, F. (2006) Emissions and Spatial Variability of N2O, N2 and Nitrous Oxide Mole Fraction at the Field Scale, Revealed with 15N Isotopic Techniques. Soil Biology and Biochemistry, 38, 941-951.
http://dx.doi.org/10.1016/j.soilbio.2005.08.010

[38]   Folorunso, O.A. and Rolston, D.E. (1984) Spatial Variability of Field Measured Denitrification Gas Fluxes. Soil Science Society of America Journal, 48, 1214-1219.
http://dx.doi.org/10.2136/sssaj1984.03615995004800060002x

[39]   Parkin, T.B., Kaspar, H.F., Sextone, A.J. and Tiedje, J.M. (1984) A Gas-Flow Soil Method to Measure Field Denitrification Rates. Soil Biology and Biochemistry, 16, 323-330.
http://dx.doi.org/10.1016/0038-0717(84)90026-9

[40]   Parsons, L., Scott Smith, M. and Murray, R.E. (1991) Soil Denitrification Dynamics: Spatial and Temporal Variations of Enzyme Activity, Populations and Nitrogen Gas Loss. Soil Science Society of America Journal, 55, 90-95.
http://dx.doi.org/10.2136/sssaj1991.03615995005500010016x

[41]   Drury, C.F., McKenney, D.J. and Findlay, W.I. (1991) Relationships between Denitrification, Microbial Biomass and Indigenous Soil Properties. Soil Biology and Biochemistry, 23, 751-755.
http://dx.doi.org/10.1016/0038-0717(91)90145-A

[42]   Weier, K.L., Doran, J.W., Power, J.F. and Walters, D.T. (1993) Denitrification and the Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon and Nitrate. Soil Science Society of America Journal, 57, 66-72.
http://dx.doi.org/10.2136/sssaj1993.03615995005700010013x

[43]   Burton, D.L. and Beauchamp, E.G. (1985) Denitrification Rate Relationship with Soil Parameters in the Field. Communications in Soil Science and Plant Analysis, 16, 539-549.
http://dx.doi.org/10.1080/00103628509367626

[44]   Vinther, F.P. (1984) Total Denitrification and the Ratio between N2O and N2 during the Growth of Spring Barley. Plant and Soil, 76, 227-232.
http://dx.doi.org/10.1007/BF02205582

[45]   Ryden, J.C. (1983) Denitrification Loss from a Grassland Soil in the Field Receiving Different Rates of Nitrogen as Ammonium Nitrate. Journal of Soil Science, 34, 355-365.
http://dx.doi.org/10.1111/j.1365-2389.1983.tb01041.x

[46]   Myrold, D.D. and Tiedje, J.M. (1985) Establishment of Denitrification Capacity in Soil: Effects of Carbon, Nitrate and Moisture. Soil Biology and Biochemistry, 17, 819-822.
http://dx.doi.org/10.1016/0038-0717(85)90140-3

[47]   Dendooven, L. and Anderson, J.M. (1994) Dynamics of Reduction Enzymes Involved in the Denitrification Process in Pasture Soil. Soil Biology and Biochemistry, 26, 1501-1506.
http://dx.doi.org/10.1016/0038-0717(94)90091-4

[48]   Davidson, E.A. (1991) Fluxes of Nitrous Oxide and Nitric Oxide from Terrestrial Ecosystems. In: Rogers, J.E. and Whitman, W.B., Eds., Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxide, and Halomethanes, ASM Press, Washington DC, 219-235.

[49]   Tiedje, J.M. (1988) Ecology of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. In: Zehnder, A.J.B., Ed., Biology of Anaerobic Microorganisms, John Wiley and Sons, New York, 179-244.

[50]   Granli, T. and B?ckman, O.C. (1994) Nitrous Oxide from Agriculture. Norwegian Journal of Agricultural Sciences, 12, 1-128.

 
 
Top