On Synchronization of Pinning-Controlled Networks with Reducible and Asymmetric Coupling Matrix

Show more

References

[1] A. L. Barabási and R. Albert, “Emergence of Scaling in Random Networks,” Science, Vol. 286, No. 5439, 1999, pp. 509-512. doi:10.1126/science.286.5439.509

[2]
S. H. Strogatz, “Exploring Complex Networks,” Nature, Vol. 410, 2001, pp. 268-276. doi:10.1038/35065725

[3]
D. J. Watts and S. H. Strogatz, “Collective Dynamics of Small-World,” Nature, Vol. 393, 1998, pp. 440-442.
doi:10.1038/30918

[4]
S. A. Pandit and R. E. Amritkar, “Characterization and Control of Small-World Networks,” Physical Review E, Vol. 60, No. 2, 1999, pp. 1119-1122.
doi:10.1103/PhysRevE.60.R1119

[5]
Q. Song, J. D. Cao and W. W. Yu, “Second-Order Leader- Following Consensus of Nonlinear Multi-Agent Systems via Pinning Control,” Systems and Control Letters, Vol. 59, No. 9, 2010, pp. 553-562. doi:10.1016/j.sysconle.2010.06.016

[6]
Q. Song and J. D. Cao, “On Pinning Synchronization of Directed and Undirected Complex Dynamical Networks,” IEEE Transactions on Circuit System I, Vol. 57, No. 3, 2010, pp. 672-680. doi:10.1109/TCSI.2009.2024971

[7]
W. Lin and H. F. Ma, “Synchronization between Adaptively Coupled Systems with Discrete and Distributed Time- Delays,” IEEE Transactions on Automatic Control, Vol. 55, No. 4, 2010, pp. 819-830. doi:10.1109/TAC.2010.2041993

[8]
X. W. Liu and T. P. Chen, “Synchronization Analysis for Nonlinearly-Coupled Complex Networks with an Asym- Metrical Coupling Matrix,” Physica A, Vol. 387, No. 16- 17, 2008, pp. 4429-4439.

[9]
W. W. Yu, G. R. Chen and J. H. Lü, “On Pinning Syn- Chronization of Complex Dynamical Networks,” Automa- tica, Vol. 45, No. 2, 2009, pp. 429-435.
doi:10.1016/j.automatica.2008.07.016

[10]
Z. G. Zhang and X. Z. Liu, “Observer-Based Impulsive Chaotic Synchronization of Discrete-Time Switched Systems,” Nonlinear Dynamics, Vol. 62, No. 4, 2010, pp. 781-789.
doi:10.1007/s11071-010-9762-y

[11]
W. L. Guo, F. Austin and S. H. Chen, “Global Synchroni- zation of Nonlinearly Coupled Complex Networks with Non-Delayed and Delayed Coupling,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 6, 2010, pp. 1631-1639.
doi:10.1016/j.cnsns.2009.06.016

[12]
F. Liu, Q. Song and J. D. Cao, “Improvements and Application of Entrainment Control for Nonlinear Dynami- cal Systems,” Chaos, Vol. 18, No. 4, 2008, pp. 043120.
doi:10.1063/1.3029670

[13]
T. P. Chen, X. W. Liu and W. L. Lu, “Pinning Complex Networks by a Single Controller,” IEEE Transactions on Circuits and Systems-I: Regular Papers, Vol. 54, 2007, pp. 1317-1326. doi:10.1109/TCSI.2007.895383

[14]
W. G. Xia and J. D. Cao, “Pinning Synchronization of Delayed Dynamical Networks via Periodically Intermitt- ent Control,” Chaos, Vol. 19, No. 1, 2009, Article ID: 013120.doi:10.1063/1.3071933

[15]
D. P. Lellis, D. M. Bernardo and F. Garofalo, “Synchroni- zation of Complex Networks through Local Adaptive Coupling,” Chaos, Vol. 18, No. 3, 2008, Article ID: 037110.doi:10.1063/1.2944236

[16]
D. P. Lellis, D. M. Bernardo and F. Garofalo, “Novel Decentralized Adaptive Strategeis for the Synchroniza- tion of Complex Networks,” Automatica, Vol. 45, No. 5, 2009, pp. 1312-1318.
doi:10.1016/j.automatica.2009.01.001

[17]
M. Porfiri and D. M. Bernardo, “Criteria for Global Pinning- Controllability of Complex Networks,” Automatica, Vol. 44, No. 12, 2008, pp. 3100-3106.

[18]
T. Yanagita and A. S. Mikhailov, “Design of Easily Synchronizable Oscillator Networks Using the Monte Carlo Optimization Method,” Physical Review E, Vol. 81, No. 5, 2010, Article ID: 056204.
doi:10.1103/PhysRevE.81.056204

[19]
J. C. Zhao, J. A. Lu and X. Q. Wu, “Pinning Control of General Complex Dynamical Networks with Optimiza- tion,” Science China-Information Sciences, Vol. 53, No. 4, 2010, pp. 813-822. doi:10.1007/s11432-010-0039-3

[20]
G. S. Duane, “A ‘Cellular Neuronal’ Approach to Optimi- zation Problems,” Chaos, Vol. 19, No. 3, 2009, Article ID: 033114.doi:10.1063/1.3184829

[21]
J. H. Park, S. M. Lee and H. Y. Jung, “LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete- Time Complex Networks,” Journal of Optimization Theory and Application, Vol. 143, No. 2, 2009, pp. 357-367.
doi:10.1007/s10957-009-9562-z

[22]
L. Z. Lu and C. E. M. Pearce, “Some New Bounds for Singular Values and Eigenvalues of Matrix Product,” Annals of Operations Research, Vol. 98, No. 1-4, 2000, pp. 141-148. doi:10.1023/A:1019200322441

[23]
W. W. Yu, J. D. Cao, K. W. Wong and J. H. Lü, “New Communication Schemes Based on Adaptive Synchroni- Zation,” Chaos, Vol. 17, No. 3, 2007, Article ID: 033114.
doi:10.1063/1.2767407

[24]
X. F. Li, A. C. S. Leung and X. P. Han, “Complete (Anti-) Synchronization of Chaotic Systems with Fully Uncertain Parameters by Adaptive Control,” Nonlinear Dynamics, Vol. 63, No. 1-2, 2011, pp. 263-275.
doi:10.1007/s11071-010-9802-7