AiM  Vol.4 No.12 , September 2014
Common Preconditions for Safe Phage Therapy of Pseudomonas aeruginosa Infections
Abstract: One of the approaches to the treatment of infections caused by multiply-(MDR) or extra drug- resistant (XDR) pathogenic strains may be application of bacterial viruses (bacteriophages)— phage therapy. Results of a long, but quite limited use of phage therapy in several Eastern European countries, as well as experiments on animal models in Western countries support the possibility to use phage therapy. However, given the role of phages in the evolution of bacterial pathogens, it is necessary to discuss and evaluate negative consequences of mass introduction of phage therapy, as the measures necessary for its safe use. We discuss some actions in case of transiting to world-wide use of phage therapy with purpose to prolong the active life of phage therapy and to diminish possible complications.
Cite this paper: Krylov, V. , Pleteneva, E. , Shaburova, O. , Bourkaltseva, M. , Krylov, S. , Chesnokova, E. and Polygach, O. (2014) Common Preconditions for Safe Phage Therapy of Pseudomonas aeruginosa Infections. Advances in Microbiology, 4, 766-773. doi: 10.4236/aim.2014.412084.

[1]   Clarke, P.H. and Richmond M.H. (1975) Genetics and Biochemistry of Pseudomonas. John Wiley and Sons, London.

[2]   Cornelis, P. (Ed.) (2008) Pseudomonas: Genomics and Molecular Biology. Caister Academic Press, Belgium.

[3]   Krylov, V.N. (2001) Phagotherapy in Terms of Bacteriophage Genetics: Hopes, Perspectives, Safety, Limitations. Russian Journal of Genetics, 37, 715-730.

[4]   Kutter, E. and Sulakvelidze, A. (Eds.) (2005) Bacteriophages—Biology and Application. CRC Press, Boca Raton.

[5]   Merabishvili, M., Pirnay, J.P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Glonti, T., Krylov, V., Mast, J., Van Parys, L., Lavigne, R., Volckaert, G., Mattheus, W., Verween, G., De Corte, P., Rose, T., Jennes, S., Zizi, M., De Vos, D. and Vaneechoutte, M. (2009) Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials. PLoS ONE, 4, Article ID: e4944.

[6]   Krylov, V., Shaburova, O., Krylov, S. and Pleteneva, E. (2013) A Genetic Approach for Development of New Therapeutic Phages to Fight Pseudomonas Aeruginosa in Wound Infections. Viruses, 5, 15-53.

[7]   Chan, B.K., Abedon, S.T. and Loc-Carrillo, C. (2013) Phage Cocktails and the Future of Phage Therapy. Future Microbiology, 8, 769-783.

[8]   Chanishvili, N. (2012) Phage Therapy—History from Twort and d’Herelle Through Soviet Experience to Current Approaches. Advances in Virus Research, 83, 3-40.

[9]   Krylov, V.N. (2014) Bacteriophages of Pseudomonas aeruginosa: Long-Term Prospects for Use in Phage Therapy. Advances in Virus Research, 88, 227-278.

[10]   Skurnik, M. and Strauch, E. (2006) Phage therapy: Facts and Fiction. International Journal of Medical Microbiology, 296, 5-14.

[11]   Brüssow, H. (2012) What Is Needed for Phage Therapy to Become a Reality in Western Medicine? Virology, 434, 138-142.

[12]   Fortier, L.C. and Sekulovic, O. (2013) Importance of Prophages to Evolution and Virulence of Bacterial Pathogens. Virulence, 4, 354-365.

[13]   Krylov, V.N., Tolmachova, T.O. and Akhverdian, V.Z. (1993) DNA Homology in Species of Bacteriophages Active on Pseudomonas aeruginosa. Archives of Virology, 131, 141-151.

[14]   NCBI GenBank.

[15]   McCallum, S.J., Gallagher, M.J., Corkill, J.E., Hart, C.A., Ledson, M.J. and Walshaw, M.J. (2002) Spread of an Epidemic Pseudomonas aeruginosa Strain from a Patient with Cystic Fibrosis (CF) to Non-CF Relatives. Thorax, 57, 559-560.

[16]   Armstrong, D.S., Nixon, G.M., Carzino, R., Bigham, A., Carlin, J.B., Robins-Browne, R.M. and Grimwood, K. (2002) Detection of a Widespread Clone of Pseudomonas aeruginosa in a Pediatric Cystic Fibrosis Clinic. American Journal of Respiratory and Critical Care Medicine, 166, 983-987.

[17]   Panagea, S., Winstanley, C., Walshaw, M.J., Ledson M.J. and Hart C.A. (2005) Environmental Contamination with an Epidemic Strain of Pseudomonas aeruginosa in a Liverpool Cystic Fibrosis Centre, and Study of Its Survival on Dry Surfaces. Journal of Hospital Infection, 59, 102-107.

[18]   Winstanley, C., Langille, M.G.I., Fothergill, J.L., Kukavica-Ibrulj, I., Paradis-Bleau, C., Sanschagrin, Fo., Thomson, N.R., Winsor, G.L., Quail, M.A. and Lennard, N. (2009) Newly Introduced Genomic Prophage Islands Are Critical Determinants of in Vivo Competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Research, 19, 12-23.

[19]   Shabalova, L.A., Kapranov, N.I., Krylov, V.N. and Solovieva, T.I. (1993) Pseudomonas aeruginosa Bacteriophages in Treatment of Pseudomonas aeruginosa Infection in CF. 7th Annual North American Cystic Fibrosis Conference, Dallas, Texas, 13-16 October 1993, 264.

[20]   Golshahi, L., Lynch, K.H., Dennis, J.J. and Finlay, W.H. (2011) In Vitro Lung Delivery of Bacteriophages KS4-M and ФKZ Using Dry Powder Inhalers for Treatment of Burkholderia cepacia Complex and Pseudomonas aeruginosa Infections in Cystic Fibrosis. Journal of Applied Microbiology, 110, 106-117.

[21]   Lynch, K.H. and Dennis, J.J. (2012) Cangene Gold Medal Award Lecture—Genomic Analysis and Modification of Burkholderia cepacia Complex Bacteriophages. Canadian Journal of Microbiology, 58, 221-235.

[22]   Vandenheuvel, D., Singh, A., Vandersteegen, K., Klumpp, J., Lavigne, R. and Van den Mooter, G. (2013) Feasibility of Spray Drying Bacteriophages into Respirable Powders to Combat Pulmonary Bacterial Infections. European Journal of Pharmaceutics and Biopharmaceutics, 84, 578-582.

[23]   Alemayehu, D., Casey, P.G., McAuliffe, O., Guinane, C.M., Martin, J.G., Shanahan, F., Coffey, A., Ross, R.P. and Hill, C. (2012) Bacteriophages ΦMR299-2 and ΦNH-4 Can Eliminate Pseudomonas aeruginosa in the Murine Lung and on Cystic Fibrosis Lung Airway Cells. mBio, 3, Article ID: e00029-12.

[24]   Henry, M., Lavigne, R. and Debarbieux, L. (2013) Predicting in Vivo Efficacy of Therapeutic Bacteriophages Used to Treat Pulmonary Infections. Antimicrobial Agents and Chemotherapy, 12, 5961-5968.

[25]   Krylov, V.N. and Zhazykov, I.Zh. (1978) Pseudomonas Bacteriophage phiKZ—Possible Model for Studying the Genetic Control of Morphogenesis. Genetika, 14, 678-685.

[26]   Krylov, V.N., Smirnova, T.A., Minenkova, I.B., Plotnikova, T.G., Zhazikov, I.Z. and Khrenova, E.A. (1984) Pseudomonas Bacteriophage phiKZ Contains an Inner Body in its Capsid. Canadian Journal of Microbiology, 30, 758-762.

[27]   Mesyanzhinov, V.V., Robben, J., Grymonprez, B., Kostyuchenko, V.A., Bourkaltseva, M.V., Sykilinda, N.N., Krylov, V.N. and Volckaert, G. (2002) The Genome of Bacteriophage phiKZ of Pseudomonas aeruginosa. Journal of Molecular Biology, 317, 1-19.

[28]   Hertveldt, K., Lavigne, R., Pleteneva, E., Sernova, N., Kurochkina, L., Korchevskii, R., Robben, J., Mesyanzhinov, V., Krylov, V.N. and Volckaert, G. (2005) Genome Comparison of Pseudomonas aeruginosa Large Phages. Journal of Molecular Biology, 354, 536-545.

[29]   Pleteneva, E.A., Krylov, S.V., Shaburova, O.V., Burkal’tseva, M.V., Miroshnikov, K.A. and Krylov, V.N. (2010) Pseudolysogeny of Pseudomonas aeruginosa Bacteria Infected with phiKZ-Like Bacteriophages. Russian Journal of Genetics, 46, 20-25.

[30]   Krylov, S.V., Pleteneva, E.A., Bourkaltseva, M.V., Shaburova, O.V., Miroshnikov, K.A., Lavigne, R., Cornelissen, A. and Krylov, V.N. (2011) Genome Instability of Pseudomonas aeruginosa Phages of the EL Species: Examination of Virulent Mutants. Russian Journal of Genetics, 47, 162-167.

[31]   Lavigne, R., Burkal’tseva, M.V., Robben, J., Sykilinda, N.N., Kurochkina, L.P., Grymomprez, B., Jonckx, B., Krylov, V.N., Mesyanzhinov, V.V. and Volckaert, G. (2003) The Genome of Bacteriophage phiKMV, a T7-Like Virus Infecting Pseudomonas aeruginosa. Virology, 312, 49-59.

[32]   Ceyssens, P.J., Glonti, T., Kropinski, N.M., Lavigne, R., Chanishvili, N., Kulakov, L., Lashkhi, N., Tediashvili, M. and Merabishvili, M. (2011) Phenotypic and Genotypic Variations Within a Single Bacteriophage Species. Virology Journal, 8, 134.

[33]   Pleteneva, E.A., Shaburova, O.V., Sykilinda, N.N., Miroshnikov, K.A., Krylov, S.V., Mesianzhinov, V.V. and Krylov, V.N. (2008) Study of the Diversity in a Group of Phages of Pseudomonas aeruginosa Species PB1 (Myoviridae) and Their Behavior in Adsorbtion-Resistant Bacterial Mutants. Russian Journal of Genetics, 44, 185-194.

[34]   Ceyssens, P.J., Miroshnikov, K., Mattheus, W., Krylov, V., Robben, J., Noben, J.P., Vanderschraeghe, S., Sykilinda, N., Kropinski, A.M., Volckaert, G., Mesyanzhinov, V. and Lavigne, R. (2009) Comparative Analysis of the Widespread and Conserved PB1-Like Viruses Infecting Pseudomonas aeruginosa. Environmental Microbiology, 11, 2874-2883.

[35]   Tan, Y., Zhang, K., Rao, X., Jin, X., Huang, J., Zhu, J., Chen, Z., Hu, X., Shen, X., Wang, L. and Hu, F. (2007) Whole Genome Sequencing of a Novel Temperate Bacteriophage of P. aeruginosa: Evidence of tRNA Gene Mediating Integration of the Phage Genome into the Host Bacterial Chromosome. Cellular Microbiology, 9, 479-491.

[36]   Ceyssens, P.J., Hertveldt, K., Ackermann, H.W., Noben, J.P., Demeke, M., Volckaert, G. and Lavigne, R. (2008) The Intron-Containing Genome of the Lytic Pseudomonas phage LUZ24 Resembles the Temperate Phage PaP3. Virology, 377, 233-238.

[37]   Krylov, S.V., Kropinski, A.M., Pleteneva, E.A., Shaburova, O.V., Burkal’tseva, M.V., Miroshnikov, K.A. and Krylov, V.N. (2012) Properties of the New D3-Like Pseudomonas aeruginosa Bacteriophage phiPMG1: Genome Structure and Prospects for the Use in Phage Therapy. Russian Journal of Genetics, 48, 902-911.

[38]   Kropinski, A.M. (2000) Sequence of the Genome of the Temperate, Serotype-Converting Pseudomonas aeruginosa Bacteriophage D3. Journal of Bacteriology, 182, 6066-6074.

[39]   Jeon, J., Kim, J.W., Yong, D., Lee, K. and Chong, Y. (2012) Complete Genome Sequence of the Bacteriophage YMC01/01/P52 PAE BP, Which Causes Lysis of Verona Integron-Encoded Metallo-β-Lactamase-Producing, Carbapenem-Resistant Pseudomonas aeruginosa. Journal of Virology, 86, 13876-13877.

[40]   Burkal’tseva, M.V., Krylov, S.V., Kropinski, A.M., Pletneva, E.A., Shaburova, O.V. and Krylov, V.N. (2011) Bacteriophage phi297—The New Species of Temperate Phages Pseudomonas aeruginosa with a Mosaic Genome: Potential Use in Phagotherapy. Russian Journal of Genetics, 47, 794-798.

[41]   Krylov, S.V., Kropinski, A.M., Shaburova, O.V., Miroshnikov, K.A., Chesnokova, E.N. and Krylov, V.N. (2013) New Temperate Pseudomonas aeruginosa Phage, phi297: Specific Features of Genome Structure. Russian Journal of Genetics, 49, 806-818.

[42]   Latino, L., Essoh, C., Blouin, Y., Vu Thien, H. and Pourcel, C. (2014) A Novel Pseudomonas aeruginosa Bacteriophage, Ab31, a Chimera Formed from Temperate Phage PAJU2 and P. putida Lytic Phage AF: Characteristics and Mechanism of Bacterial Resistance. PLoS ONE, 9, Article ID: e93777.

[43]   Kim, S., Rahman, M., Seol, S.Y., Yoon, S.S. and Kim, J. (2012) Pseudomonas aeruginosa Bacteriophage PA1Φ Requires Type IV Pili for Infection and Shows Broad Bactericidal and Biofilm Removal Activities. Applied and Environmental Microbiology, 78, 6380-6385.

[44]   Ahiwale, S., Tamboli, N., Thorat, K., Kulkarni, R., Ackermann, H. and Kapadnis, B. (2011) In Vitro Management of Hospital Pseudomonas aeruginosa Biofilm Using Indigenous T7-Like Lytic Phage. Current Microbiology, 62, 335-340.