Back
 EPE  Vol.6 No.9 , September 2014
Solar Driven Wind Speed Monitoring System Using Wireless or Wired Sensors
Abstract: Instrumented towers are being constructed to characterize vertical wind profiles in order to improve the understanding and characterization of a desired environment up to 100 m. The site being measured is at a height of 2500 m over sea level, in one side of Sierra Madre Oriental, which crosses Mexico from North to South. As the site has no energy, it was powered by a photovoltaic system. Power consumption of two sets of sensors fixed at the tower was evaluated. The first sensor set consisted of a pulsed anemometer and a RH sensor having a 0 - 10 V output; these sensors used cables for transmitting the output signals. Three cup anemometers fixed at 25, 35 and 45 m high measured wind speed. Wireless sensors in the second set, requires of a power consumption and battery life study. Solar cells energized the sensors, becoming the installation and operation easier. The datalogger that acquired the RH and T measurements encountered an 11% voltage loss throughout the cable; cup anemometer measurements did not show variations due to its pulsed signals. Wireless sensors drew less energy from the PV system, resulting in battery overcharge. A dump regulator turned-on a 200 W lamp during the night when the battery voltage reached 14 V; the lamp was turned-off when the battery voltage felt beneath 11.5 V. Considering the high wind available, wireless sensors batteries were charged by small wind turbines combined with 5 W solar panels.
Cite this paper: Hahn, F. , Pablo, M. and Reyes, J. (2014) Solar Driven Wind Speed Monitoring System Using Wireless or Wired Sensors. Energy and Power Engineering, 6, 213-221. doi: 10.4236/epe.2014.69019.
References

[1]   American Wind Energy Association (AWEA) (2006) Wind Power Outlook 2006.
http://www.awea.org/pubs/documents/Outlook_2006.pdf

[2]   USA Environmental Protection Agency (EPA) (2000) Meteorological Monitoring Guidance for Regulatory Modeling Applications. EPA-454/R-99-005.

[3]   WRIGHT (2012) Uranium Study: Air Quality Monitoring Report. DEQ/DMME Contract No. EP881027. Wright Environmental Services Inc., 1-69.

[4]   de Noord, M., Curvers, A., Eecen, P., Antoniou, I., J?rgensen, H.E., Pedersen, T.F., Bradley, S., von Hünerbein, S., Kindler, D., Mellinghoff, H. and Emeis, S. (2005) WISE Wind Energy SODAR Evaluation Final Report. EU Project NNE5-2001-297, ECN-C--05-044, 1-95.

[5]   Antoniou, I., J?rgensen, H.E., von Hünerbein, S., Bradley, S.G., Kindler, D., Warmbier, G. and de Noord, M. (2004) The Profiler Inter-Comparison Experiment (PIE). European Wind Energy Conference (EWEC), London, 22-25 November 2004.

[6]   Suriyachai, P., Roedig, U. and Scott, A. (2012) A Survey of MAC Protocols for Mission-Critical Applications in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 14, 240-264.
http://dx.doi.org/10.1109/SURV.2011.020211.00036

[7]   Klaib, A.R., Shubair, R.M., Al-Qutayri, M.A. and Ng, J.W.P. (2011) An Overview of Localization Techniques for Wireless Sensor Networks. International Conference on Innovations in Information Technology, Abu Dhabi, 25-27 April 2011, 167-172.

[8]   Crossbow (2012) Wireless Measurement System: MICAz. MICAz Data Sheet.

[9]   Sudevalyam, S. and Kulkarni, P. (2011) Energy Harvesting Sensor Nodes: Survey and Implication. IEEE Communications Surveys and Tutorials, 13, 443-461.
http://dx.doi.org/10.1109/SURV.2011.060710.00094

[10]   Devabhaktuni, V., Alam, M., Depuru, S.S.,Green, R. C.Nims, D., and Near, C. (2013) Solar energy:Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564.
http://dx.doi.org/10.1016/j.rser.2012.11.024

[11]   Bates, J., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000) Thin-Film Lithium and Lithium-Ion Batteries. Solid State Ionics, 135, 33-45.
http://dx.doi.org/10.1016/S0167-2738(00)00327-1

[12]   Simjee, F. and Chou, P.H. (2006) Everlast: Long-Life, Supercapacitor-Operated Wireless Sensor Node. Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee, 4-6 October 2006, 197-202.

[13]   Holloday, J.D., Jones, E.O., Phelps, M. and Hu, J. (2002) Microfuel Processor for Use in a Miniature Power Supply. Journal of Power Sources, 108, 21-27.
http://dx.doi.org/10.1016/S0378-7753(01)01011-4

[14]   Schaevitz, S.B., Franz, A.J., Jensen, K.F. and Schmidt, M.A. (2001) A Combustion-Based MEMS Thermoelectric Power Generator. 11th International Conference on Solid-State Sensors and Actuators, Munich, 10-14 June 2001, 30- 33.

[15]   Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F. and Schmidt, M.A. (2003) A Thermophotovoltaic Micro-Generator for Portable Power Applications. 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Boston, 8-12 June 2003, 714-717.

[16]   Randall, J.F. (2003) On Ambient Energy Sources for Powering Indoor Electronic Devices. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.

[17]   Corke, P., Valencia, P., Sikka, P., Wark, T. and Overs, L. (2007) Long-Duration Solar-Powered Wireless Sensor Networks. 4th Workshop on Embedded Networked Sensors, Cork.

[18]   Yang, B. and Sun, D. (2013) Testing, Inspecting and Monitoring Technologies for Wind Turbine Blades: A Survey. Renewable and Sustainable Energy Reviews, 22, 515-526.
http://dx.doi.org/10.1016/j.rser.2012.12.056

[19]   Lynch, J.P. and Loh, K.J. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest, 38, 91-130.
http://dx.doi.org/10.1177/0583102406061499

[20]   Ling, Q., Tian, Z., Yin, Y. and Li, Y. (2009) Localized Structural Health Monitoring Using Energy-Efficient Wireless Sensor Networks. IEEE Sensors Journal, 9, 1596-1604.
http://dx.doi.org/10.1109/JSEN.2009.2019318

[21]   Hyers, R., McGowan, J., Sullivan, K., Manwell, J. and Syrett, B. (2006) Condition Monitoring and Prognosis of Utility Scale Wind Turbines. Energy Materials, 1, 187-203.

[22]   Ishengoma, F. (2014) A Novel Design of IEEE 802.15.4 and Solar Based Autonomous Water Quality Monitoring Prototype Using ECHERP. International Journal of Computer Science and Network Solutions, 2, 24-36.

[23]   Laurier, S. (2007) Experimental Analysis of Photovoltaic Energy Scavengers for Sensor Nodes. M.Sc. Thesis, Computer Engineering and Networks Laboratory, University of Ghent, Belgium.

[24]   Han, S., Kang, Y., Park, K. and Jang, M. (2007) Design of Environment Monitoring System for Aquaculture Farms. 2007 Frontiers in the Convergence of Bioscience and Information Technologies, The Jeju Island, 11-13 October 2007, 889- 893.

[25]   Shifeng, Y., Jing, K. and Jimin, Z. (2007) Wireless Monitoring System Foraquaculture Environment. IEEE International Workshop on RF Integration Technology, Singapore, 9-11 December 2007, 274-277.

[26]   Lu, Y.L., Lin, C.Y. and Tsai, W.S. (2012) Application of Solar Wireless Sensor Network to Monitor Water-Quality in Cage Aquaculture Zone in the Inner Sea at Penghu. AFITA/WCCA 2012 Conference, Taiwan, 3-6 September 2012.

[27]   Campbell Scientific (2009) Model 014A Met One Wind Speed Sensor Instruction Manual. Campbell Scientific Inc., Utah.

[28]   Omni Instruments (2009) Humidity and Temperature Transmitter RHT-WM Operating Manual. Omni Instruments Inc., USA.

[29]   Mantracourt (2009) T24-WSS Wind Speed Sensor (Anemometer). Zse Electronic Mess-Systeme & Sensortechnik Gmbh, Germany.

[30]   Monnit (2012) Wireless Humidity (RH) Sensor. Monnit Corporation, Utah.

[31]   Monnit (2013) Monnit Wi-Fi Humidity Sensor. Monnit Corporation, Utah.

[32]   Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B. and Rolfes, R. (2010) Structural Monitoring of Wind Turbines Using Wireless Sensor Networks. Smart Structures and Systems, 6, 183-196.
http://dx.doi.org/10.12989/sss.2010.6.3.183

[33]   Vick, B.D., Clark, R.N., Ling, J. and Ling, S. (2003) Remote Solar, Wind, and Hybrid Solar/Wind Energy Systems for Purifying Water. Journal of Solar Energy Engineering, 125, 107-111.
http://dx.doi.org/10.1115/1.1531148

[34]   Martinez, T.M., Nelson, J.S. and Begay-Campbell, S. (2005) Remote Monitoring System Design-Sustainable Systems for the Navajo Tribal Utility Authority. Sandia National Laboratories, Albuquerque.

[35]   Andreotti, A., Mottola,F., Pagano, M. and Velotto, G. (2008) Design Ofultracapacitor Based Filter for Isolated PV Source Feeding Pulsing Load. Electric Power Systems Research, 78, 1038-1046.
http://dx.doi.org/10.1016/j.epsr.2007.08.003

[36]   Bergonzini, C., Brunelli, D. and Benini, L. (2010) Comparison of Energy Intake Prediction Algorithms for Systems Powered by Photovoltaic Harvesters. Microelectronics Journal, 41, 766-777.
http://dx.doi.org/10.1016/j.mejo.2010.05.003

[37]   Logerais, P.O., Riou, O., Camara, M.A. and Durastanti, J.F. (2013) Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches. Journal of Solar Energy, 2013, Article ID: 659014.
http://dx.doi.org/10.1155/2013/659014

[38]   Rafik, F., Gualous, H., Gallay, R., Crausaz, A. and Berthon, A. (2007) Frequency, Thermal and Voltage Supercapacitor Characterization and Modeling. Journal of Power Sources, 165, 928-934.
http://dx.doi.org/10.1016/j.jpowsour.2006.12.021

[39]   Sevcik, P. and Kovar, O. (2013) Power Unit Based on Supercapacitors and Solar Cell Module. 1st International Virtual Scientific Conference, Zilina, 10-14 June 2013, 468-471.

[40]   Martino, M. and Varley, J. (2012) A Wireless Sensor Node Powered by a PV/Supercapacitor/Battery Trio. University of Toronto, Toronto. www.ti.com/corp/docs/university/
docs/University_of_Toronto_Wireless_Sensor_Node_MatthewMartino_JordanVarley.pdf


[41]   American Wind Energy Association (AWEA) (2006) Wind Power Outlook 2006.
http://www.awea.org/pubs/documents/Outlook_2006.pdf

[42]   USA Environmental Protection Agency (EPA) (2000) Meteorological Monitoring Guidance for Regulatory Modeling Applications. EPA-454/R-99-005.

[43]   WRIGHT (2012) Uranium Study: Air Quality Monitoring Report. DEQ/DMME Contract No. EP881027. Wright Environmental Services Inc., 1-69.

[44]   de Noord, M., Curvers, A., Eecen, P., Antoniou, I., J?rgensen, H.E., Pedersen, T.F., Bradley, S., von Hünerbein, S., Kindler, D., Mellinghoff, H. and Emeis, S. (2005) WISE Wind Energy SODAR Evaluation Final Report. EU Project NNE5-2001-297, ECN-C--05-044, 1-95.

[45]   Antoniou, I., J?rgensen, H.E., von Hünerbein, S., Bradley, S.G., Kindler, D., Warmbier, G. and de Noord, M. (2004) The Profiler Inter-Comparison Experiment (PIE). European Wind Energy Conference (EWEC), London, 22-25 November 2004.

[46]   Suriyachai, P., Roedig, U. and Scott, A. (2012) A Survey of MAC Protocols for Mission-Critical Applications in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 14, 240-264.
http://dx.doi.org/10.1109/SURV.2011.020211.00036

[47]   Klaib, A.R., Shubair, R.M., Al-Qutayri, M.A. and Ng, J.W.P. (2011) An Overview of Localization Techniques for Wireless Sensor Networks. International Conference on Innovations in Information Technology, Abu Dhabi, 25-27 April 2011, 167-172.

[48]   Crossbow (2012) Wireless Measurement System: MICAz. MICAz Data Sheet.

[49]   Sudevalyam, S. and Kulkarni, P. (2011) Energy Harvesting Sensor Nodes: Survey and Implication. IEEE Communications Surveys and Tutorials, 13, 443-461.
http://dx.doi.org/10.1109/SURV.2011.060710.00094

[50]   Devabhaktuni, V., Alam, M., Depuru, S.S.,Green, R. C.Nims, D., and Near, C. (2013) Solar energy:Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564.
http://dx.doi.org/10.1016/j.rser.2012.11.024

[51]   Bates, J., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000) Thin-Film Lithium and Lithium-Ion Batteries. Solid State Ionics, 135, 33-45.
http://dx.doi.org/10.1016/S0167-2738(00)00327-1

[52]   Simjee, F. and Chou, P.H. (2006) Everlast: Long-Life, Supercapacitor-Operated Wireless Sensor Node. Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee, 4-6 October 2006, 197-202.

[53]   Holloday, J.D., Jones, E.O., Phelps, M. and Hu, J. (2002) Microfuel Processor for Use in a Miniature Power Supply. Journal of Power Sources, 108, 21-27.
http://dx.doi.org/10.1016/S0378-7753(01)01011-4

[54]   Schaevitz, S.B., Franz, A.J., Jensen, K.F. and Schmidt, M.A. (2001) A Combustion-Based MEMS Thermoelectric Power Generator. 11th International Conference on Solid-State Sensors and Actuators, Munich, 10-14 June 2001, 30- 33.

[55]   Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F. and Schmidt, M.A. (2003) A Thermophotovoltaic Micro-Generator for Portable Power Applications. 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Boston, 8-12 June 2003, 714-717.

[56]   Randall, J.F. (2003) On Ambient Energy Sources for Powering Indoor Electronic Devices. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.

[57]   Corke, P., Valencia, P., Sikka, P., Wark, T. and Overs, L. (2007) Long-Duration Solar-Powered Wireless Sensor Networks. 4th Workshop on Embedded Networked Sensors, Cork.

[58]   Yang, B. and Sun, D. (2013) Testing, Inspecting and Monitoring Technologies for Wind Turbine Blades: A Survey. Renewable and Sustainable Energy Reviews, 22, 515-526.
http://dx.doi.org/10.1016/j.rser.2012.12.056

[59]   Lynch, J.P. and Loh, K.J. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest, 38, 91-130.
http://dx.doi.org/10.1177/0583102406061499

[60]   Ling, Q., Tian, Z., Yin, Y. and Li, Y. (2009) Localized Structural Health Monitoring Using Energy-Efficient Wireless Sensor Networks. IEEE Sensors Journal, 9, 1596-1604.
http://dx.doi.org/10.1109/JSEN.2009.2019318

[61]   Hyers, R., McGowan, J., Sullivan, K., Manwell, J. and Syrett, B. (2006) Condition Monitoring and Prognosis of Utility Scale Wind Turbines. Energy Materials, 1, 187-203.

[62]   Ishengoma, F. (2014) A Novel Design of IEEE 802.15.4 and Solar Based Autonomous Water Quality Monitoring Prototype Using ECHERP. International Journal of Computer Science and Network Solutions, 2, 24-36.

[63]   Laurier, S. (2007) Experimental Analysis of Photovoltaic Energy Scavengers for Sensor Nodes. M.Sc. Thesis, Computer Engineering and Networks Laboratory, University of Ghent, Belgium.

[64]   Han, S., Kang, Y., Park, K. and Jang, M. (2007) Design of Environment Monitoring System for Aquaculture Farms. 2007 Frontiers in the Convergence of Bioscience and Information Technologies, The Jeju Island, 11-13 October 2007, 889- 893.

[65]   Shifeng, Y., Jing, K. and Jimin, Z. (2007) Wireless Monitoring System Foraquaculture Environment. IEEE International Workshop on RF Integration Technology, Singapore, 9-11 December 2007, 274-277.

[66]   Lu, Y.L., Lin, C.Y. and Tsai, W.S. (2012) Application of Solar Wireless Sensor Network to Monitor Water-Quality in Cage Aquaculture Zone in the Inner Sea at Penghu. AFITA/WCCA 2012 Conference, Taiwan, 3-6 September 2012.

[67]   Campbell Scientific (2009) Model 014A Met One Wind Speed Sensor Instruction Manual. Campbell Scientific Inc., Utah.

[68]   Omni Instruments (2009) Humidity and Temperature Transmitter RHT-WM Operating Manual. Omni Instruments Inc., USA.

[69]   Mantracourt (2009) T24-WSS Wind Speed Sensor (Anemometer). Zse Electronic Mess-Systeme & Sensortechnik Gmbh, Germany.

[70]   Monnit (2012) Wireless Humidity (RH) Sensor. Monnit Corporation, Utah.

[71]   Monnit (2013) Monnit Wi-Fi Humidity Sensor. Monnit Corporation, Utah.

[72]   Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B. and Rolfes, R. (2010) Structural Monitoring of Wind Turbines Using Wireless Sensor Networks. Smart Structures and Systems, 6, 183-196.
http://dx.doi.org/10.12989/sss.2010.6.3.183

[73]   Vick, B.D., Clark, R.N., Ling, J. and Ling, S. (2003) Remote Solar, Wind, and Hybrid Solar/Wind Energy Systems for Purifying Water. Journal of Solar Energy Engineering, 125, 107-111.
http://dx.doi.org/10.1115/1.1531148

[74]   Martinez, T.M., Nelson, J.S. and Begay-Campbell, S. (2005) Remote Monitoring System Design-Sustainable Systems for the Navajo Tribal Utility Authority. Sandia National Laboratories, Albuquerque.

[75]   Andreotti, A., Mottola,F., Pagano, M. and Velotto, G. (2008) Design Ofultracapacitor Based Filter for Isolated PV Source Feeding Pulsing Load. Electric Power Systems Research, 78, 1038-1046.
http://dx.doi.org/10.1016/j.epsr.2007.08.003

[76]   Bergonzini, C., Brunelli, D. and Benini, L. (2010) Comparison of Energy Intake Prediction Algorithms for Systems Powered by Photovoltaic Harvesters. Microelectronics Journal, 41, 766-777.
http://dx.doi.org/10.1016/j.mejo.2010.05.003

[77]   Logerais, P.O., Riou, O., Camara, M.A. and Durastanti, J.F. (2013) Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches. Journal of Solar Energy, 2013, Article ID: 659014.
http://dx.doi.org/10.1155/2013/659014

[78]   Rafik, F., Gualous, H., Gallay, R., Crausaz, A. and Berthon, A. (2007) Frequency, Thermal and Voltage Supercapacitor Characterization and Modeling. Journal of Power Sources, 165, 928-934.
http://dx.doi.org/10.1016/j.jpowsour.2006.12.021

[79]   Sevcik, P. and Kovar, O. (2013) Power Unit Based on Supercapacitors and Solar Cell Module. 1st International Virtual Scientific Conference, Zilina, 10-14 June 2013, 468-471.

[80]   Martino, M. and Varley, J. (2012) A Wireless Sensor Node Powered by a PV/Supercapacitor/Battery Trio. University of Toronto, Toronto. www.ti.com/corp/docs/university/docs/University
_of_Toronto_Wireless_
Sensor_Node_MatthewMartino_JordanVarley.pdf


 
 
Top