MSCE  Vol.2 No.9 , September 2014
Scale-Up of the Polyol Process for Nanomaterial Synthesis
ABSTRACT
Two classes of inorganic materials such as metallic nanowires and metal oxides nanorods were synthesized using the polyol process and scaled-up to produce macroscopic quantities. Scale-up strategy was successfully built by performing the synthesis in a 15 cm diameter, 4.5 litersvolume cylindrical tank using a straight paddle impeller and a Rushton turbine. The actual yield of the synthesis is ~45 grams per batch for zinc oxide nanorods and ~20 grams per batch for cobalt nickel nanowires. Under the same rotation speed, the aspect ratio of the produced nanowires and nanorods using the Rushton turbine impeller with radial flow patterns has shown a lower aspect ratio, nanoparticle size and polydispersity. This is attributed to the increase of the local dissipated energy as spatially calculated by computational fluid dynamics (CFD) that is proposed to design, optimize and scale-up the polyol process.

Cite this paper
Farhat, S. , Ouar, N. , Hosni, M. , Hinkov, I. , Mercone, S. , Schoenstein, F. and Jouini, N. (2014) Scale-Up of the Polyol Process for Nanomaterial Synthesis. Journal of Materials Science and Chemical Engineering, 2, 1-11. doi: 10.4236/msce.2014.29001.
References
[1]   Figlarz, M., Fiévet, F. and Lagier, J.P. (1985) French Patent No. 8221483.

[2]   Poul, L., Ammar, S., Jouini, N., Fievet, F. and Villain, F. (2003) Synthesis of Inorganic Compounds (Metal, Oxide and Hydroxide) in Polyol Medium: A Versatile Route Related to the Sol-Gel Process. Journal of Sol-Gel Science and Technology, 26, 261-265. http://dx.doi.org/10.1023/A:1020763402390

[3]   Whitney, T.M., Searson, P.C., Jiang, J.S. and Chien, C.L. (1993) Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science, 261, 1316-1319. http://dx.doi.org/10.1126/science.261.5126.1316

[4]   Keis, K., Bauer, C., Boschloo, G., Hagfeldt, A., Westermark, K., Rensmo, H. and Siegbahn, H. (2002) Nanostructured ZnO Electrodes for Dye-Sensitized Solar Cell Applications. Journal of Photochemistry and Photobiology A: Chemistry, 148, 57-64. http://dx.doi.org/10.1016/S1010-6030(02)00039-4

[5]   Zauner, R. (1994) Scale-Up of Precipitation Processes. Ph.D. Thesis, University of London, London.

[6]   Gradl, J., Schwarzer, H.-C., Schwertfirm, F., Manhart, M. and Peukert, W. (2006) Precipitation of Nanoparticles in a T-Mixer: Coupling the Particle Population Dynamics with Hydrodynamics through Direct Numerical Simulation. Chemical Engineering and Processing: Process Intensification, 45, 908-916. http://dx.doi.org/10.1016/j.cep.2005.11.012

[7]   Schwarzer, H.-C., Schwertfirm, F., Manhart, M., Schmid, H.-J. and Peukert, W. (2006) Predictive Simulation of Nanoparticle Precipitation Based on the Population Balance Equation. Chemical Engineering Science, 61, 167-181. http://dx.doi.org/10.1016/j.ces.2004.11.064

[8]   Jézéquel, D., Guenot, J., Jouini, N. and Fiévet, F. (1995) Submicrometer Zinc Oxide Particles: Elaboration in Polyol Medium and Morphological Characteristics. Journal of Materials Research, 10, 77-83.
http://dx.doi.org/10.1557/JMR.1995.0077

[9]   Dakhlaoui, A., Jendoubi, M., Smiri, L.S., Kanaev, A. and Jouini, N. (2009) Synthesis, Characterization and Optical Properties of ZnO Nanoparticles with Controlled Size and Morphology. Journal of Crystal Growth, 311, 3989-3996. http://dx.doi.org/10.1016/j.jcrysgro.2009.06.028

[10]   Ung, D., Soumare, Y., Chakroune, N., Viau, G., Vaulay, M.J., Richard, V. and Fiévet, F. (2007) Growth of Magnetic Nanowires and Nanodumbbells in Liquid Polyol. Chemistry of Materials, 19, 2084-2094. http://dx.doi.org/10.1021/cm0627387

[11]   Soumare, Y., Piquemal, J.Y., Maurer, T., Ott, F., Chaboussant, G., Falqui, A. and Viau, G. (2008) Oriented Magnetic Nanowires with High Coercivity. Journal of Materials Chemistry, 18, 5696-5702.
http://dx.doi.org/10.1039/b810943e

[12]   Soumare, Y., Garcia, C., Maurer, T., Chaboussant, G., Ott, F., Fiévet, F., Piquemal, J.-Y. and Viau, G. (2009) Kinetically Controlled Synthesis of Hexagonally Close-Packed Cobalt Nanorods with High Magnetic Coercivity. Advanced Functional Materials, 19, 1971-1977. http://dx.doi.org/10.1002/adfm.200800822

[13]   Viau, G., Garcia, C., Maurer, T., Chaboussant, G., Ott, F., Soumare, Y. and Piquemal, J.Y. (2009) Highly Crystalline Cobalt Nanowires with High Coercivity Prepared by Soft Chemistry. Physica Status Solidi A, 206, 663-666.

[14]   Liu, Q., Guo, X., Wang, T., Li, Y. and Shen, W. (2010) Synthesis of CoNi Nanowires by Heterogeneous Nucleation in Polyol. Materials Letters, 64, 1271-1274. http://dx.doi.org/10.1016/j.matlet.2010.03.006

[15]   Ait Atmane, K., Zighem, F., Soumare, Y., Ibrahim, M., Boubekri, R., Maurer, T., Margueritat, J., Piquemal, J.-Y., Ott, F., Chaboussant, G., Schoenstein, F., Jouini, N. and Viau, G. (2013) High Temperature Structural and Magnetic Properties of Cobalt Nanorods. Journal of Solid State Chemistry, 197, 297-303. http://dx.doi.org/10.1016/j.jssc.2012.08.009

[16]   Hosni, M., Kusumawati, Y., Farhat, S., Jouini, N. and Pauporté, T. (2014) Effects of Oxide Nanoparticle Size and Shape on Electronic Structure, Charge Transport and Recombination in Dye-Sensitized Solar Cell Photoelectrodes. The Journal of Physical Chemistry C, 118, 16791-16798.
http://dx.doi.org/10.1021/jp412772b

[17]   Hosni, M., Farhat, S., Schoenstein, F., Karmous, F., Jouini, N., Viana, V. and Mgaidi, A. (2014) Ultrasound Assisted Synthesis of Nanocrystalline Zinc Oxide: Experiments and Modelling. Journal of Alloys and Compounds, in Press. http://dx.doi.org/10.1016/j.jallcom.2013.12.056.

[18]   Ouar, N., Bousnina, M.A., Schoenstein, F., Mercone, S., Brinza, O., Farhat, S. and Jouini, N. (2014) Spark Plasma Sintering of Co80Ni20 Nanopowders Synthesized by Polyol Process and Their Magnetic and Mechanical Properties. Journal of Alloys and Compounds, in press. http://dx.doi.org/10.1016/j.jallcom.2014.01.058.

[19]   Ouar, N., Schoenstein, F., Mercone, S., Farhat, S., Villeroy, B., Leridon, B. and Jouini, N. (2013) Spark-Plasma-Sintering Magnetic Field Assisted Compaction of Co80Ni20 Nanowires for Anisotropic Ferromagnetic Bulk Materials. Journal of Applied Physics, 114, Article ID: 163907. http://dx.doi.org/10.1063/1.4827199

[20]   Fluent Commercial Software, ANSYS® Version 13.0.

[21]   Bockhorn, H., Mewes, D., Peukert, W. and Warnecke, H.-J. (2010) Micro and Macro Mixing Analysis, Simulation and Numerical Calculation. Springer-Verlag Berlin Heidelberg.
http://dx.doi.org/10.1007/978-3-642-04549-3

[22]   Winkelmann, M., Schuler, T., Uzunogullari, P., Winkler, C.A., Gerlinger, W., Sachweh, B. and Schuchmann, H.P. (2012) Influence of Mixing on the Precipitation of Zinc Oxide Nanoparticles with the Miniemulsion Technique. Chemical Engineering Science, 81, 209-219. http://dx.doi.org/10.1016/j.ces.2012.06.036

[23]   Bensaid, S., Deorsola, F.A., Marchisio, D.L., Russo, N. and Fino, D. (2014) Flow Field Simulation and Mixing Efficiency Assessment of the Multi-Inlet Vortex Mixer for Molybdenum Sulfide Nanoparticle Precipitation. Chemical Engineering Journal, 238, 66-77. http://dx.doi.org/10.1016/j.cej.2013.09.065

[24]   He, B., Chen, Y., Liu, H. and Liu, Y. (2005) Synthesis of Solvent-Stabilized Colloidal Nanoparticles of Platinum, Rhodium and Rutheniumby Microwave-Polyol Process. Journal of Nanoscience and Nanotechnology, 5, 266-270. http://dx.doi.org/10.1166/jnn.2005.028

[25]   Jo, Y.H., Park, J.C., Bang, J.U., Song, H. and Lee, H.M. (2011) New Synthesis Approach for Low Temperature Bimetallic Nanoparticles: Size and Composition Controlled Sn-Cu Nanoparticles. Journal of Nanoscience and Nanotechnology, 11, 1037-1041. http://dx.doi.org/10.1166/jnn.2011.3052

 
 
Top