Back
 AJCM  Vol.4 No.4 , September 2014
Conservative Interaction of N Internal Waves in Three Dimensions
Abstract: The Navier-Stokes system of equations is reduced to a system of the vorticity, continuity, Helmholtz, and Lamb-Helmholtz equations. The periodic Dirichlet problems are formulated for internal waves vanishing at infinity in the upper and lower domains. Stationary kinematic Fourier (SKF) structures, stationary exponential kinematic Fourier (SKEF) structures, stationary dynamic exponential (SDEF) Fourier structures, and SKEF-SDEF structures of three spatial variables and time are constructed in the current paper to treat kinematic and dynamic problems of the three-dimensional theory of the Newtonian flows with harmonic velocity. Two exact solutions for conservative interaction of N internal waves in three dimensions are developed by the method of decomposition in invariant structures and implemented through experimental and theoretical programming in Maple?. Main results are summarized in a global existence theorem for the strong solutions. The SKEF, SDEF, and SKEF-SDEF structures of the cumulative flows are visualized by two-parametric surface plots for six fluid-dynamic variables.
Cite this paper: Miroshnikov, V. (2014) Conservative Interaction of N Internal Waves in Three Dimensions. American Journal of Computational Mathematics, 4, 329-356. doi: 10.4236/ajcm.2014.44029.
References

[1]   Lamb, S.H. (1945) Hydrodynamics. 6th Edition, Dover Publications, New York.

[2]   Pozrikidis, C. (2011) Introduction to Theoretical and Computational Fluid Dynamics. 2nd Edition, Oxford University Press, Oxford.

[3]   Miroshnikov, V.A. (2005) The Boussinesq-Rayleigh Series for Two-Dimensional Flows Away from Boundaries. Applied Mathematics Research Express, 2005, 183-227.
http://dx.doi.org/10.1155/amrx.2005.183

[4]   Korn, G.A. and Korn, T.A. (2000) Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. 2nd Revised Edition, Dover Publications, New York.

[5]   Miroshnikov, V.A. (2014) Nonlinear Interaction of N Conservative Waves in Two Dimensions. American Journal of Computational Mathematics, 4, 127-142. http://dx.doi.org/10.4236/ajcm.2014.43012

[6]   Miroshnikov, V.A. (1995) Solitary Wave on the Surface of a Shear Stream in Crossed Electric and Magnetic Fields: The Formation of a Single Vortex. Magnetohydrodynamics, 31, 149-165.
http://mhd.sal.lv/contents/1995/2/MG.31.2.5.R.html

[7]   Miroshnikov, V.A. (1996) The Finite-Amplitude Solitary Wave on a Stream with Linear Vorticity. European Journal of Mechanics, B/Fluids, 15, 395-411.

[8]   Miroshnikov, V.A. (2002) The Boussinesq-Rayleigh Approximation for Rotational Solitary Waves on Shallow Water with Uniform Vorticity. Journal of Fluid Mechanics, 456, 1-32.
http://dx.doi.org/10.1017/S0022112001007352

[9]   Kochin, N.E., Kibel, I.A. and Roze, N.V. (1964) Theoretical Hydromechanics. John Wiley & Sons Ltd., Chichester.

[10]   Miroshnikov, V.A. (2009) Spatiotemporal Cascades of Exposed and Hidden Perturbations of the Couette Flow. Advances and Applications in Fluid Dynamics, 6, 141-165.
http://www.pphmj.com/abstract/4402.htm

[11]   Miroshnikov, V.A. (2012) Dual Perturbations of the Poiseuille-Hagen Flow in Invariant Elliptic Structures. Advances and Applications in Fluid Dynamics, 11, 1-58. http://www.pphmj.com/abstract/6711.htm

[12]   Miroshnikov, V.A. (2014) Interaction of Two Pulsatory Waves of the Korteweg-de Vries Equation in a Zigzag Hyperbolic Structure. American Journal of Computational Mathematics, 4, 254-270.
http://dx.doi.org/10.4236/ajcm.2014.43022

 
 
Top