[1] Huang, Z., Zeng, D.D. and Chen, H. (2007) Analyzing Consumer-Product Graphs: Empirical Findings and Applications in Recommender Systems. Management Science, 53, 1146-1164. http://dx.doi.org/10.1287/mnsc.1060.0619
[2] Lü, L.-Y. and Zhou, T. (2011) Link Prediction in Complex Networks: A Survey. Physica A: Statistical Mechanics and Its Applications, 390, 1150-1170.
http://dx.doi.org/10.1016/j.physa.2010.11.027
[3] Sarukkai, R.R. (2000) Link Prediction and Path Analysis Using Markov Chains. Computer Networks, 33, 377-386.
http://dx.doi.org/10.1016/S1389-1286(00)00044-X
[4] Liben-Nowell, D. and Kleinberg, J. (2007) The Link-Prediction Problem for Social Networks. Journal of the American Society for Information Science and Technology, 58, 1019-1031.
http://dx.doi.org/10.1002/asi.20591
[5] Zhou, T., Kuscsik, Z., Liu, J.G., et al. (2010) Solving the Apparent Diversity-Accuracy Dilemma of Recommender Systems. Proceedings of the National Academy of Sciences of the United States of America, 107, 4511-4515.
http://dx.doi.org/10.1073/pnas.1000488107
[6] Zhou, T., Ren, J., Medo, M. and Zhang, Y.-C. (2007) Bipartite Network Projection and Personal Recommendation. Physical Review E, 76, 1-7.
http://dx.doi.org/10.1103/PhysRevE.76.046115
[7] Zhou, T., Jiang, L.L., Su, R.Q., et al. (2008) Effect of Initial Configuration on Network-Based Recommendation. Europhysics Letters, 81, 1-4.
http://dx.doi.org/10.1209/0295-5075/81/58004
[8] Zhou, T., Su, R.Q., Liu, R.R., et al. (2009) Accurate and Diverse Recommendations via Eliminating Redundant Correlations. New Journal of Physics, 11, 1-19.
http://dx.doi.org/10.1088/1367-2630/11/12/123008
[9] Liu, C. and Zhou, W.X. (2012) Heterogeneity in Initial Resource Configurations Improves a Network-Based Hybrid Recommendation Algorithm. Physica A: Statistical Mechanics and Its Applications, 391, 5704-5711.
http://dx.doi.org/10.1016/j.physa.2012.06.034
[10] Guan, Y., Zhao, D.D., Zeng, A. and Shang, M.-S. (2013) Preference of Online Users and Personalized Recommendations. Physica A: Statistical Mechanics and Its Applications, 392, 3417-3423.
http://dx.doi.org/10.1016/j.physa.2013.03.045
[11] Wang, Q. and Duan S.Y. (2013) Improved Recommendation Algorithm Based on Bipartite Networks. Application Research of Computers, 30, 771-775.
[12] Herlocker, J.L., Konstan, J.A., Terveen, K., et al. (2004) Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information and Systems, 22, 5-53.
http://dx.doi.org/10.1145/963770.963772
[13] Billsus, D. and Pazzani, M.J. (1998) Learning Collaborative Information Filters. Proceedings of the 15th International Conference on Machine Learning, Madison, 26-30 July 1998, 46-54.
[14] Linden, G. (2009) What Is a Good Recommendation Algorithm.
http://cacm.acm.org/blogs/blog-cacm/22925-what-is-a-good-recommendation-algorithm/fulltext.
[15] Wei, W., Liu, Q. and Zhang, L. (2013) Review on Diversity in Personalized Recommender Systems. Library and Information Service, 57, 127-136.