AM  Vol.5 No.16 , September 2014
Effects of Layer Thickness and Edge Conditions to Thermoelastic Characteristics on Thermal Barrier Coatings
Author(s) Jaegwi Go*, Je-Hyun Lee

The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC specimens prepared with TriplexPro?-200 system was controlled by changing the processing parameter and feedstock, showing the various thicknesses and microstructures. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations were too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic behaviors of TBC specimens with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the microstructure and thickness of the top coat, and the edge condition in theoretical analysis were crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.

Cite this paper
Go, J. and Lee, J. (2014) Effects of Layer Thickness and Edge Conditions to Thermoelastic Characteristics on Thermal Barrier Coatings. Applied Mathematics, 5, 2417-2425. doi: 10.4236/am.2014.516233.
[1]   Clarke, D.R. and Levi, C.G. (2003) Materials Design for the Next Generation Thermal Barrier Coatings. Annual Review of Materials Research, 33, 383-417.

[2]   Wolfe, D.E., Singh, J., Miller, R.A., Eldridge, J.I. and Zhu, D.M. (2005) Tailored Microstructure of EB-PVD 8YSZ Thermal Barrier Coatings with Low Thermal Conductivity and High Thermal Reflectivity for Turbine Applications. Surface and Coatings Technology, 190, 132-149.

[3]   Guo, S. and Kagawa, Y. (2006) Effect of Thermal Exposure on Hardness and Young’s Modulus of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings. Ceramics International, 32, 263-270.

[4]   Itoh, Y., Saitoh, M. and Tamura, M. (2000) Characteristics of MCrAlY Coatings Sprayed by High Velocity Oxygen-Fuel Spraying System. Journal of Engineering for Gas Turbines and Power, 122, 43-49.

[5]   Wu, Y.N., Zhang, G., Feng, Z.C., Zhang, B.C., Liang, Y. and Liu, F.J. (2001) Oxidation Behavior of Laser Remelted Plasma Sprayed Coatings, NiCrAlY and NiCrAlY-Al2O3. Surface and Coatings Technology, 138, 56-60.

[6]   Zotov, N., Bartsch, M., Chernova, L., Schmidt, D.A., Havenith, M. and Eggeler, G. (2010) Effects of Annealing on the Microstructure and the Mechanical Properties of EB-PVD Thermal Barrier Coatings. Surface and Coatings Technology, 15, 452-464.

[7]   Schulz, U. and Schmücker, M. (2000) Microstructure of ZrO2 Thermal Barrier Coatings Applied by EB-PVD. Materials Science and Engineering: A, 276, 1-8.

[8]   Jung, S.-I., Kim, J.-H., Lee, J.-H., Jung, Y.-G., Paik, U. and Lee, K.-S. (2009) Microstructure and Mechanical Properties of Zirconia-Based Thermal Barrier Coatings with Starting Powder Morphology. Surface and Coatings Technology, 204, 802-806.

[9]   Lee, J.-H., Tsai, P.-C. and Chang, C.-L. (2008) Micro-structure and Thermal Cyclic Performance of Laser-Glazed Plasma-Sprayed Ceria-Yttria-Stabilized Zirconia Thermal Barrier Coatings. Surface and Coatings Technology, 202, 5607-5612.

[10]   Kwon, J.Y., Lee, J.H., Jung, Y.G. and Paik, U. (2006) Effect of Bond Coat Nature and Thickness on Mechanical Characteristic and Contact Damage of Zirconia-Based Thermal Barrier Coatings. Surface and Coatings Technology, 201, 3483-3490.

[11]   Pindera, M.-J., Aboudi, J. and Arnold, S.M. (2002) Analysis of Spallation Mechanism in Thermal Barrier Coatings with Graded Bond Coats Using the Higher-Order Theory for FGMs. Engineering Fracture Mechanics, 69, 1587-1606.

[12]   Sarikaya, O. and Celik, E. (2002) Effects of Residual Stress on Thickness and Interlayer of Thermal Barrier Ceramic MgO-ZrO2 Coatings on Ni and AlSi Substrates Using Finite Element Method. Material and Design, 23, 645-650.