[1] Bonner, B.P. and Wanamaker, B.J. (1991) Acoustic Nonlinearities Produced by a Single Macroscopic Fracture in Granite. In: Thompson, D.O. and Chimenti, D.E., Eds., Review of Progress in Quantitative Nondestructive Evaluation, Springer, New York, 1861-1867.
http://dx.doi.org/10.1007/978-1-4615-3742-7_94
[2] Guyer, R.A. and Johnson, P.A. (2009) Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. WILEY-VCH Verlag GmbH and Co. KgaA, Weinheim.
http://dx.doi.org/10.1002/9783527628261
[3] Johnson, P.A. and McCall, K.R. (1994) Observation and Implications of Nonlinear Elastic Wave Response in Rock. Geophysical Research Letters, 21, 165-168.
http://dx.doi.org/10.1029/93GL03162
[4] Johnson, P.A., Shankland, T.J., O’Connell, R.J. and Albright, J.N. (1987) Nonlinear Generation of Elastic Waves in Crystalline Rock. Journal of Geophysical Research, 92, 3597-3602.
http://dx.doi.org/10.1029/JB092iB05p03597
[5] Rodionov, V.N., Sizov, I.A. and Tsvetkov, V.M. (1986) Fundamentals of Geomechanics. Nedra Press, Moscow. (in Russian)
[6] Sadovsky, M.A. and Pisarenko, G.F. (1991) Seismic Process in Block Medium. Nauka, Moscow. (in Russian)
[7] Sadovsky, M.A., Ed. (1989) Discrete Properties of Geophysics Medium. Nauka, Moscow. (in Russian)
[8] Achenbach, J.D. (1973) Wave Propagation in Plastic Solids. North-Holland, Amsterdam.
[9] Aki, K. and Richards, P.G. (1980) Quantitative Seismology. Theory and Methods, Vol. I and II. W.H. Freeman, San Francisco.
[10] Truesdell, C. (1984) Rational Thermodynamics. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-5206-1
[11] Biot, M.A. (1956) Theory of Propagation of Elastic Waves in a Fluid-Saturated Solid. I. Low-Frequency Range. Journal of the Acoustical Society of America, 28, 168-178.
http://dx.doi.org/10.1121/1.1908239
[12] Kutateladze, S.S. and Nakoryakov, V.E. (1984) Heat Exchange and Waves in Gas-Liquid Systems. Nauka, Novosibisk. (in Russian)
[13] Lyakhov, G.M. (1982) Waves in Soils and Porous Multicomponent Media. Nauka, Moscow. (in Russian)
[14] Raats, P.A.C. (1984) Applications of the Theory of Mixtures in Soil Physics. In: Truesdell, C., Ed., Rational Thermodynamics, Springer, New York, 326-343.
http://dx.doi.org/10.1007/978-1-4612-5206-1_16
[15] Rajagopal, K.R. and Tao, L. (1995) Machanics of Mixtures. World Scientific Publishing, Singapore.
[16] Nikolaevskii, V.N. (1985) Viscoelasticity with Internal Oscillators as a Possible Model of Seismoactive Medium. Doklady Akademii Nauk SSSR, 283, 1321-1324. (in Russian)
[17] Nigmatulin, R.I. (1987) Dynamics of Multiphase Media, Vol. I and II. Nauka, Moscow. (in Russian)
[18] Struminskii, V.V. (1980) Mechanics and Technical Progress. Nauka, Moscow. (in Russian)
[19] Vakhnenko, V.O., Danylenko, V.A. and Michtchenko, A.V. (1999) An Asymptotic Averaged Model of Nonlinear Long Waves Propagation in Media with a Regular Structure. International Journal of Non-Linear Mechanics, 34, 643-654.
http://dx.doi.org/10.1016/S0020-7462(98)00014-6
[20] Vakhnenko, V.O., Danylenko, V.A. and Michtchenko, A.V. (2000) Diagnostics of the Medium Structure by Long Wave of Finite Amplitude. International Journal of Non-Linear Mechanics, 35, 1105-1113.
http://dx.doi.org/10.1016/S0020-7462(99)00082-7
[21] Vakhnenko, V.A., Danylenko, V.A. and Kulich, V.V. (1993) Averaged Description of Wave Processes in Geophysical Medium. Geophysics Journal (Ukraine), 15, 66-71.
[22] Vakhnenko, V.A., Danylenko, V.A. and Kulich, V.V. (1994) Averaged Description of Shock-Wave Processes in Periodic Media. Soviet Journal of Chemical Physics, 12, 534-546.
[23] Vakhnenko, V.A. and Kulich, V.V. (1992) Long-Wave Processes in Periodic Media. Journal of Applied Mechanics and Technical Physics, 32, 814-820.
[24] Landau, L.D. and Lifshitz, E.M. (1988) Fluids Mechanics. Pergamon, New York.
[25] Lavrentiev, M. and Chabat, B. (1980) Effets Hyrdodynamiques et Modéles Mathématiques. Traduction franc. éditions, Mir, Moscow.
[26] Clarke, J.E. (1984) Lectures on Plane Waves in Reacting Gases. Annals of Physics, 9, 211-306.
http://dx.doi.org/10.1051/anphys:0198400902021100
[27] Yasnikov, G.P. and Belousov, V.S. (1978) Effective Thermodynamic Functions of a Gas with Solid Particles. Journal of Engineering Physics, 34, 734-737.
http://dx.doi.org/10.1007/BF00860421
[28] Danylenko, V.A., Sorokina, V.V. and Vladimirov, V.A. (1993) On the Governing Equations in Relaxing Models and Self-Similar Quasiperiodic Solutions. Journal of Physics A, 26, 7125-7135.
http://dx.doi.org/10.1088/0305-4470/26/23/047
[29] Mandel’shtam, L.I. and Leonovich, M.A. (1937) To the Theory of a Sound Attenuation in Liquids. Journal of Experimental and Theoretical Physics, 3, 438-449. (in Russian)
[30] Bakhvalov, N.S. and Panasenko, G.P. (1984) Averaging of Processes in Periodic Media. Nauka, Moscow. (in Russian)
[31] Bakhvalov, N.S. and Eglit, M.E. (1983) Processes in Periodic Media Not Described in Terms of Averaged Characteristics. Doklady Akademii Nauk SSSR, 268, 836-840.
[32] Berdichevsky, V.L. (2010) Variational Principles of Continuum Mechanics. Springer-Verlag, Berlin-Heidelberg.
[33] Sanchez-Palencia, E. (1980) Non-Homogeneous Media and Vibration Theory. Springer, New York.
[34] Korn, G. and Korn, T. (1961) Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York-Toronto- London.
[35] Kudinov, V.M. and Palamarchuk, B.I. (1976) Parameters of Shock Waves under Explosion of Explosive Charge in Foam. Soviet Physics Doklady, 228, 555-557.
[36] Kudinov, V.M., Palamarchuk, B.I. and Vakhnenko, V.A. (1983) Attenuation of a Strong Shock Wave in a Two-Phase Medium. Soviet Physics Doklady, 272, 1080-1083.
[37] Kudinov, V.M., Palamarchuk, B.I., Vakhnenko, V.A., et al. (1983) Relaxation Phenomena in a Foamy Structure. In: Bowen, J.R., Manson, N., Oppenheim, A.K. and Soloukhin, R.I., Eds., Shook Waves, Explosions, and Detonations, American Institute of Aeronautics and Astronautics, New York, 96-118.
[38] Vakhnenko, V.A., Kudinov, V.M. and Palmarchuk, B.I. (1982) Effect of Thermal Relaxation of Attenuation of Shock Waves in Two-Phase Medium. Soviet Applied Mechanics, 18, 1126-1133.
http://dx.doi.org/10.1007/BF00882225
[39] Vakhnenko, V.A., Kudinov, V.M. and Palmarchuk, B.I. (1983) Analogy of Motion of the Two-Phase Media Containing Incompressible and Gaseous Phases with Gas Motion. Doklady Akademii Nauk Ukrainskoj SSR Serija A, 6, 22-24. (in Russian)
[40] Vakhnenko, V.A., Kudinov, V.M. and Palmarchuk, B.I. (1984) Damping of Strong Shocks in Relaxing Media. Combustion, Explosion and Shock Waves, 20, 97-103.
http://dx.doi.org/10.1007/BF00749928
[41] Vakhnenko, V.A. and Palmarchuk, B.I. (1984) Description of Shock-Wave Processes in a Two-Phase Medium Containing an Incompressible Phase. Journal of Applied Mechanics and Technical Physics, 25, 101-107.
http://dx.doi.org/10.1007/BF00916876
[42] Vakhnenko, V.A. and Palmarchuk, B.I. (1986) Evolution of Strong Shock Waves in a Medium with Thermal Relaxation. Soviet Applied Mechanics, 22, 267-272.
http://dx.doi.org/10.1007/BF00887250
[43] Rudinger, G. (1965) Some Effects of Finite Particle Volume on the Dynamics of Gas-Particle Mixtures. AIAA Journal, 3, 1217-1222.
http://dx.doi.org/10.2514/3.3112
[44] Rudinger, G. (1964) Some Properties of Shook Relaxation in Gas Plows Garring Small Particles. Physics of Fluids, 7, 658-663. http://dx.doi.org/10.1063/1.1711265
[45] Rudinger, G. and Chang, A. (1964) Analysis of Nonsteady Two-Phase Flow. Physics of Fluids, 7, 1747-1754.
http://dx.doi.org/10.1063/1.2746772
[46] Pai, I., Menon, S. and Fan, Z.Q. (1980) Similarity Solution of a Strong Shock Wave Propagating in a Mixture of Gas and Dusty Particles. International Journal of Engineering Science, 18, 1365-1378.
http://dx.doi.org/10.1016/0020-7225(80)90093-2
[47] Suzuki, T., Ohyagi, S., Higashino, F., et al. (1976) The Propagation of Reacting Blast Waves through Inert Particle Clouds. Acta Astronautica, 3, 517-529.
http://dx.doi.org/10.1016/0094-5765(76)90158-2
[48] Vakhnenko, V.O. (2010) An Analogy of the Self-Similar Flows of a Gas and a Two-Phase Medium with Noncompressive Component. Reports of the National Academy of Sciences of Ukraine, 12, 97-104. (in Ukrainian)
[49] Vakhnenko, V.O. (2011) Similarity in Stationary Motions of Gas and Two-Phase Medium with Incompressible Component. International Journal of Non-Linear Mechanics, 46, 1356-1360.
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.07.009
[50] Korobeinikov, V.P. (1991) Problems of Point-Blast Theory. American Institute of Physics Press, New York.
[51] Sedov, L.I. (1993) Similarity and Dimensional Methods in Mechanics. CRC Press, Boca Raton.
[52] Kestenboim, Kh.S., Roslyakov, G.S. and Chudov, L.A. (1974) Point Explosion. Methods of Calculation. Tables. Nauka Press, Moscow.
[53] Gel’fand, B.E., Gubanov, A.V. and Timofeev, E.I. (1981) Features of Shock-Wave Propagation in Foams. Fizika Goreniya i Vzryva, 17, 129-136.
[54] Gel’fand, B.E., Gubanov, A.V. and Gubin, S.A. (1977) Attenuation of Shock Waves in a Two-Phase Liquid-Gas-Bubble Medium. Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, 1, 173-176.
[55] Tseitlin, Ya.I., Gil’manov, R.A. and Nilov, V.G. (1980) On Localization of Action of the Blast Hydro-Shock Wave by Bubble Screen. In: Korenistov, A.V., Ed., Vzryvnoe delo (Explosives), 82/39, Nedra Press, Moscow, 264-272.
[56] Kudinov, V.M., Palamarchuk, B.I., Gel’fand, B.E. and Gubin, S.A. (1976) The Use of Foam for Damping Shock- Waves at Welding and Cutting by Explosion. Avtomaticheskaya Svarka (Automatic Welding), 69, 12-16.
[57] Kherrmann, V. (1976) Governing Equations for Compressible Porous Materials. In: Mechanics (New Results in Foreign Science). Problems in the Theory of Plasticity, 7, Mir, Moscow, 178-216. (in Russian)
[58] Nakoryakov, V.E., Pokusaev, B.G. and Shreieber, I.R. (1993) Wave Propogation in Gas-Liquid Media. Begell House, New York.
[59] Noordrij, L. and Van Wijngaarden, L. (1979) Relaxation Effects Caused by Relative Motion on Shook Waves in Gas-Bubble-Liguid Mixtures. Journal of Fluid Mechanics, 66, 1-9.
[60] Parkin, B.R., Gilmore, F.R. and Broud, G.L. (1974) Shock Waves in Water with Bubbles of Air. In: Underwater and Underground Explosions (Russian Translation), Mir, Moscow, 152-258.
[61] Held, M. (1983) Blast Waves in Free Air. Propellants, Explosives, Pyrotechnics, 8, 1-7.
http://dx.doi.org/10.1002/prep.19830080102
[62] Adushkin, V.V. (1963) On Shock Wave Forming and Explosion Products Flying Away. Journal of Applied Mechanics and Technical Physics, 5, 107-120. (in Russian)
[63] Adushkin, V.V. and Korotkov, A.I. (1961) Shock Wave Parameters near Chemical Explosion in Air. Journal of Applied Mechanics and Technical Physics, 5, 119-123. (in Russian)
[64] Baker, W.E., Cox, P.A., Westine, P.S., et al. (1983) Explosion Hazards and Evaluation. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York.
[65] Brode, H.I. (1955) Numerical Solutions of Spherical Blast Waves. Journal of Applied Physics, 26, 766-775.
http://dx.doi.org/10.1063/1.1722085
[66] Brode, H.I. (1976) Point Explosion in Air. In: Ishlinsky, A.Yu. and Chornyy, G.G., Eds., Mechanics, Numerical Solutions of Explosions, Mir, Moscow, 4, 7-70.
[67] Gekber, N. and Bartos, J.M. (1974) Strong Spherical Blast Waves in a Dust-Laden Gas. AIAA Journal, 12, 120-122.
http://dx.doi.org/10.2514/3.49176