JMF  Vol.4 No.4 , August 2014
Currency Derivatives Pricing for Markov-Modulated Merton Jump-Diffusion Spot Forex Rate
ABSTRACT
We derive results similar to Bo et al. (2010), but in the case of dynamics of the FX rate driven by a general Merton jump-diffusion process. The main results of our paper are as follows: 1) formulas for the Esscher transform parameters which ensure that the martingale condition for the discounted foreign exchange rate is a martingale for a general Merton jump-diffusion process are derived; using the values of these parameters we proceed to a risk-neural measure and provide new formulas for the distribution of jumps, the mean jump size, and the Poisson Process intensity with respect to the measure; pricing formulas for European foreign exchange call options have been given as well; 2) obtained formulas are applied to the case of the exponential processes; 3) numerical simulations of European call foreign exchange option prices for different parameters are also provided.

Cite this paper
Swishchuk, A. , Tertychnyi, M. and Hoang, W. (2014) Currency Derivatives Pricing for Markov-Modulated Merton Jump-Diffusion Spot Forex Rate. Journal of Mathematical Finance, 4, 265-278. doi: 10.4236/jmf.2014.44024.
References
[1]   Jarrow, R. and Oldfield, G. (1981) Forward Contracts and Futures Contracts. Journal of Financial Economics, 9, 373-382.
http://dx.doi.org/10.1016/0304-405X(81)90004-0

[2]   Merton, R. (1973) The theory of Rational Option Pricing. The Bell Journal of Economics and Management Science, 4, 141-183.

[3]   Grabbe, O. (1983) The Pricing of Call and Put Options on Foreign Exchange. Journal of International Money and Finance, 2, 239-253.

[4]   Adams, P. and Wyatt, S. (1987) Biases in Option Prices: Evidence from the Foreign Currency Option Market. Journal of Banking & Finance, 11, 549-562.

[5]   Amin, K. and Jarrow, R. (1991) Pricing Foreign Currency Options under Stochastic Interest Rates. Journal of International Money and Finance, 10, 310-329.
http://dx.doi.org/10.1016/0261-5606(91)90013-A

[6]   Melino, A. and Turnbull, S. (1991) The Pricing of Foreign-Currency Options. The Canadian Journal of Economics, 24, 251-181.
http://dx.doi.org/10.2307/135623

[7]   Rumsey, J. (1991) Pricing Cross-Currency options. Journal of Futures Markets, 11, 89-93.
http://dx.doi.org/10.1002/fut.3990110109

[8]   Mikkelsen, P. (2001) Cross-Currency LIBOR Market Model. University of Aarhus, Aarhus.

[9]   Scholgl, E. (2002) A Multicurrency Extension of the Lognormal Interest Rate Market Models. Finance and Stochastics, 6, 173-196.
http://dx.doi.org/10.1007/s007800100054

[10]   Piterbarg, V. (2005) A Multi-Currency Model with FX Volatility Skew. Working Paper.

[11]   Garman, M. and Kohlhagern, S. (1983) Foreign Currency Options Values. Journal of International Money and Finance, 2, 231-237.
http://dx.doi.org/10.1016/S0261-5606(83)80001-1

[12]   Takahashi, A., Takehara, K. and Yamazaki, A. (2006) Pricing Currency Options with a Market Model of Interest Rates under Jump-Diffusion Stochastic Volatility processes of Spot Exchange rates. CIRJE-F-451, Working Paper.

[13]   Jamshidian, F. (1997) LIBOR and Swap Market Models and Measures. Finance and Stochastics, 1, 293-330.
http://dx.doi.org/10.1007/s007800050026

[14]   Miltersen, K., Sandmann, K. and Sondermann, D. (1997) Closed Form Solutions for Term Structure Derivatives with Long-Normal Interest rates. The Journal of Finance, 52, 409-430.
http://dx.doi.org/10.1111/j.1540-6261.1997.tb03823.x

[15]   Ahn, C., Cho, D. and Park, K. (2007) The Pricing of Foreign currency Options under Jump-Diffusion Processes. Journal of Futures Markets, 27, 669-695.

[16]   Goutte, S. and Zou, B. (2011) Foreign Exchange Rates under Markov Regime Switching Model. CREA Discussion Paper Series, University of Luxemburg, Luxembourg City.

[17]   Zhou, N. and Mamon, R.S. (2012) An Accessible Implementation of Interest Rate Models with Regime-Switching. Expert Systems with Applications, 39, 4679-4689.
http://dx.doi.org/10.1016/j.eswa.2011.09.053

[18]   Siu, T.K., Yang, H. and Lau, J. (2008) Pricing Currency Options under Two-Factor Markov-Modulated Stochastic Volatility Model. Insurance: Mathematics and Economics, 43, 295-302.
http://dx.doi.org/10.1016/j.insmatheco.2008.05.002

[19]   Swishchuk, A. and Eliott, R. (2007) Pricing Options. Hidden Markov Models in Finance. Springer, Berlin.

[20]   Bo, L., Wang, Y. and Yang, X. (2010) Markov-Modulated Jump-Diffusion for Currency Option Pricing. Insurance: Mathematics and Economics, 46, 461-469.
http://dx.doi.org/10.1016/j.insmatheco.2010.01.003

[21]   Bjork, T. (1998) Arbitrage Theory in Continuous Time. 2nd Edition, Oxford University Press, Oxford.
http://dx.doi.org/10.1093/0198775180.001.0001

[22]   Benth, F., Benth, J. and Koekebakker, S. (2008) Stochastic Modeling of Electricity and Related Markets. World Scientific, Singapore City.

[23]   Merton, R.C. (1976) Option Pricing When Underlying Stock Returns Are Discontinuous. Journal of Finance and Economics, 3, 125-144.
http://dx.doi.org/10.1016/0304-405X(76)90022-2

[24]   Papapantoleon, A. (2000) An Introduction to Lévy Processes with Applications to Math. Finance. Lecture Notes.

[25]   Elliott, R.J. (1982) Stochastic Calculus and Applications. Springer, Berlin.

[26]   Elliott, R.J., Chan, L. and Siu, T.K. (2005) Option Pricing and Esscher Transform under Regime Switching. Annals of Finance, 1, 423-432.
http://dx.doi.org/10.1007/s10436-005-0013-z

[27]   Elliott, R.J., Siu, T.K., Chan, L. and Lau, J.W. (2007) Pricing Options under a Generalized Markov-Modulated JumpDiffusion Model. Stochastic Analysis and Applications, 25, 821-843.

[28]   Elliott, R.J. and Osakwe, C.J.U. (2006) Option Pricing for Pure Jump Processes with Markov Switching Compensators. Finance and Stochastics, 10, 250-275.
http://dx.doi.org/10.1007/s00780-006-0004-6

[29]   Kou, S.G. (2002) A Jump-Diffusion Model for Option Pricing. Management Science, 48, 1086-1101.
http://dx.doi.org/10.1287/mnsc.48.8.1086.166

[30]   Zhang, L.H., Zhang, W.G., Xu, W.J. and Xiao, W.L. (2012) The Double-Exponential Jump-Diffusion Model for Pricing European Options under Fuzzy Environments. Economical Modelling, 29, 780-786.
http://dx.doi.org/10.1016/j.econmod.2012.02.005

 
 
Top