[1] Hu, Y.-C., Chang, C. and Huang, S. (2004) Some Design Considerations on the Electrostatically Actuated Microstructures. Sensors and Actuators A: Physical, 112, 155-161.
http://dx.doi.org/10.1016/j.sna.2003.12.012
[2] Hu, Y.-C., Wang, Y.H. and Huang, S.C. (2004) On the Dynamic and Stability Analysis of Electrostatically Actuated Microstructures. Proceedings of the 1st International Symposium on Micro & Nano Technology (ISMNT-1), III, 2-01.
[3] Pappalardo, M. and Caronti, A. (2002) A New Alternative to Piezoelectric Transducer for NDE and Medical Applications: The Capacitive Ultrasonic Micromachined Transducer (cMUT). University Roma, Rome.
[4] Pappalardo, M. (2002) A New Approach to Ultrasound Generation: The Capacitive Micromachined Transducers. University Roma, Rome.
[5] Rocha, L., Cretu, E. and Wolffenbuttel, R. (2004) Full Characterisation of Pull-In in Single-Sided Clamped Beams. Sensors and Actuators A: Physical, 110, 301-309.
http://dx.doi.org/10.1016/j.sna.2003.09.023
[6] Osterberg, P.M. and Senturia, S.D. (1997) M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures. Journal of Microelectromechanical Systems, 6, 107-118.
http://dx.doi.org/10.1109/84.585788
[7] Pamidighantam, S., et al. (2002) Pull-In Voltage Analysis of Electrostatically Actuated Beam Structures with FixedFixed and Fixed-Free end Conditions. Journal of Micromechanics and Microengineering, 12, 458-464.
http://dx.doi.org/10.1088/0960-1317/12/4/319
[8] Gupta, R.K. (1998) Electrostatic Pull-In Test Structure Design for In-Situ Mechanical Property Measurements of Microelectromechanical Systems (MEMS), Citeseer.
[9] Wei, L.C., Mohammad, A.B. and Kassim, N.M. (2002) Analytical Modeling for Determination of Pull-In Voltage for an Electrostatic Actuated MEMS Cantilever Beam. IEEE International Conference in Semiconductor Electronics, 19-21 December 2002, 233-238.
[10] Ganji, B.A. (2012) Accurate Determination of Pull-In Voltage for MEMS Capacitive Devices with Clamped Square Diaphragm. International Journal of Engineering, 25, 161-166.
http://dx.doi.org/10.5829/idosi.ije.2012.25.03b.02
[11] Rocha, L., Cretu, E. and Wolffenbuttel, R. (2003) Displacement Model for Dynamic Pull-In Analysis and Application in Large-Stroke Electrostatic Actuators. Proceedings of Eurosensors 17, 17th European Conference on Solid-State Transducers, Guimar, 20-21 September 2003, 448-451.
[12] Osterberg, P., Yie, H., Cai, X., White, J. and Senturia, S. (1994) Self-Consistent Simulation and Modelling of Electrostatically Deformed Diaphragms. IEEE Workshop on Micro Electro Mechanical Systems, MEMS’94, Oiso, 25-28 January 1994, 28-32.
[13] Hu, Y.C. and Lee, G.D. (2007) A Closed Form Solution for the Pull-In Voltage of the Micro Bridge Tamkang. Journal of Science and Engineering, 10, 147-150.
[14] Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2013) Analysis of Pull-In Instability of Electrostatically Actuated Carbon Nanotubes Using the Homotopy Perturbation Method. Journal of Mechanics of Materials and Structures, 8, 385-401.
http://dx.doi.org/10.2140/jomms.2013.8.385
[15] Fakhrabadi, M.M.S., Rastgoo, A., Ahmadian, M.T. and Mashhadi, M.M. (2014) Dynamic Analysis of Carbon Nanotubes under Electrostatic Actuation Using Modified Couple Stress Theory. Acta Mechanica, 225, 1523-1535.
http://dx.doi.org/10.1007/s00707-013-1013-0
[16] Hu, Y.C., Chang, P.Z. and Chuang, W.C. (2007) An Approximate Analytical Solution to the Pull-In Voltage of a Micro Bridge with an Elastic Boundary. Journal of Micromechanics and Microengineering, 17, 1870-1877.
[17] Kinaret, J.M., Nord, T. and Viefers, S. (2003) A Carbon-Nanotube-Based Nanorelay. Applied Physics Letters, 82, 1287-1289.
http://dx.doi.org/10.1063/1.1557324
[18] Dequesnes, M., Rotkin, S. and Aluru, N. (2002) Calculation of Pull-In Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches. Nanotechnology, 13, 120.
[19] Istadeh, K.H., Kalantarinejad, R., Aghaei, M.J. and Yazdi, M.R.S. (2013) Computational Investigation on H2S Adsorption on the CNT Channel of Conductometric Gas Sensor. Journal of Computational and Theoretical Nanoscience, 10, 2708-2713.
http://dx.doi.org/10.1166/jctn.2013.3270
[20] Sarkisov, L. and Harrison, A. (2011) Computational Structure Characterisation Tools in Application to Ordered and Disordered Porous Materials. Molecular Simulation, 37, 1248-1257.
http://dx.doi.org/10.1080/08927022.2011.592832
[21] Smith, W., Yong, C. and Rodger, P. (2002) DL_POLY: Application to Molecular Simulation. Molecular Simulation, 28, 385-471.
http://dx.doi.org/10.1080/08927020290018769
[22] Hoshyarmanesh, S., Bahrami, M. and Kalantarinejad, R. (2014) A Multiscale Approach in the Computational Modeling of Bio-Physical Environment of Micro-Mechanical Biosensor towards the Prostate Specific Antigen Diagnosis. Journal of Computational and Theoretical Nanoscience, 11, 1374-1384.
http://dx.doi.org/10.1166/jctn.2014.3507
[23] Fakhrabadi, M.M.S., Khorasani, P.K., Rastgoo, A. and Ahmadian, M.T. (2013) Molecular Dynamics Simulation of Pull-In Phenomena in Carbon Nanotubes with Stone-Wales Defects. Solid State Communications, 157, 38-44.
http://dx.doi.org/10.1016/j.ssc.2012.12.016
[24] Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2013) On the Pull-In Instability of Double-Walled Carbon Nanotube-Based Nano Electromechanical Systems with Cross-Linked Walls. Fullerenes, Nanotubes and Carbon Nanostructures.
http://dx.doi.org/10.1080/1536383X.2013.787603
[25] Ansari, R. and Sahmani, S. (2013) Prediction of Biaxial Buckling Behavior of Single-Layered Graphene Sheets Based on Nonlocal Plate Models and Molecular Dynamics Simulations. Applied Mathematical Modelling, 37, 7338-7351.
http://dx.doi.org/10.1016/j.apm.2013.03.004
[26] Bahrami, M., Kalantarinejad, R., Aghaei, M.J. and Azadi, N. (2011) Simulation of the Interaction of Carbon Nanotubes and External Flow. Journal of Computational and Theoretical Nanoscience, 8, 563-567.
http://dx.doi.org/10.1166/jctn.2011.1723
[27] Mohammadi, V., Ansari, R., Shojaei, M.F., Gholami, R. and Sahmani, S. (2013) Size-Dependent Dynamic Pull-In Instability of Hydrostatically and Electrostatically Actuated Circular Microplates. Nonlinear Dynamics, 73, 1515-1526.
http://dx.doi.org/10.1007/s11071-013-0882-z
[28] Mousavi, T., Bornassi, S. and Haddadpour, H. (2013) The Effect of Small Scale on the Pull-In Instability of NanoSwitches Using DQM. International Journal of Solids and Structures, 50, 1193-1202.
http://dx.doi.org/10.1016/j.ijsolstr.2012.11.024
[29] Wang, K.F. and Wang, B.L. (2014) Influence of Surface Energy on the Non-Linear Pull-In Instability of NanoSwitches. International Journal of Non-Linear Mechanics, 59, 69-75.
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.11.004
[30] Behera, D. and Chakraverty, S. (2013) Fuzzy Finite Element Based Solution of Uncertain Static Problems of Structural Mechanics. International Journal of Computer Applications, 59, 69-75.
[31] Wojtaszak, I.A. (1937) The Calculation of Maximum Deflection, Moments, and Shear for Uniformly Loaded Rectangular Plate with Clamped Edge. Journal of Applied Mechanics, Transactions ASME, 4, A173-A176.
[32] Szilard, R. (1973) Theory and Analysis of Plates: Classical and Numerical Methods. Prentice-Hall, Upper Saddle River.
[33] Timoshenko, S., Woinowsky-Krieger, S. and Woinowsky, S. (1959) Theory of Plates and Shells. Vol. 2, McGraw-Hill, New York.
[34] Hansson, T., Oostenbrink, C. and van Gunsteren, W. (2002) Molecular Dynamics Simulations. Current Opinion in Structural Biology, 12, 190-196.
http://dx.doi.org/10.1016/S0959-440X(02)00308-1
[35] Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., et al. (2005) Scalable Molecular Dynamics with NAMD. Journal of Computational Chemistry, 26, 1781-1802.
http://dx.doi.org/10.1002/jcc.20289
[36] Verlet, L. (1967) Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159, 98.
http://dx.doi.org/10.1103/PhysRev.159.98
[37] De Luca, S., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013) Electropumping of Water with Rotating Electric Fields. The Journal of Chemical Physics, 138, Article No. 154712.
http://dx.doi.org/10.1063/1.4801033