[1] Haykin, S. (1999) Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood Cliffs, 161-187.
[2] Ali, H. and Najjar, Y. (1999) Neuronet-Based Approach for Assessing the Liquefaction Potential of Soils. Transportation Research Record 1633, Transportation Research Board, Washington DC, 3-8.
[3] Ghaboussi, J. (1992) Potential Applications of Neurobiological Computational Models in Geotechnical Engineering. In: Pande, G.N. and Pietruszezak, S., Eds., Numerical Models in Geotechnics, Rotterdam, The Netherlands, 543-555.
[4] Goh, A.T.C. (1996) Neural-Network Modeling of CPT Seismic Liquefaction Data. Journal of Geotechnical Engineering, 122, 70-73.
http:///dx.doi.org/10.1061/(ASCE)0733-9410(1996)122:1(70)
[5] Kiefa, M.A.A. (1998) General Regression Neural Networks for Driven Piles in Cohesionless Soils. Journal of Geotechnical and Geoenvironmental Engineering, 124, 1177-1185.
http:///dx.doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1177)
[6] Kurup, P.U. and Dudani, N.K. (2002) Neural Networks for Profiling Stress History of Clays from PCPT Data. Journal of Geotechnical and Geoenvironmental Engineering, 128, 569-579.
http:///dx.doi.org/10.1061/(ASCE)1090-0241(2002)128:7(569)
[7] Baziar, M.H. and Nilipour, N. (2003) Eval-uation of Liquefaction Potential Using Neural-Networks and CPT Results. Soil Dynamics and Earthquake Engineering, 23, 631-636.
http:///dx.doi.org/10.1016/S0267-7261(03)00068-X
[8] Baziar, M.H. and Ghorbani, A. (2005) Evaluation of Lateral Spreading Using Artificial Neural Networks. Soil Dynamics and Earthquake Engineering, 25, 1-9.
http:///dx.doi.org/10.1016/j.soildyn.2004.09.001
[9] Baziar, M.H. and Jafarian, Y. (2007) Assessment of Liquefaction Triggering Using Strain Energy Concept and ANN Model: Capacity Energy. Soil Dynamics and Earth-quake Engineering, 27, 1056-1072.
http:///dx.doi.org/10.1016/j.soildyn.2007.03.007
[10] Juang, C.H., Yuan, H., Lee, D.-H. and Lin, P.-S. (2003) Simplified Cone Penetration Test-Based Method for Evaluating Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 129, 66-80.
http:///dx.doi.org/10.1061/(ASCE)1090-0241(2003)129:1(66)
[11] Rahman, M.S. and Wung, J. (2001) Lique-faction Prediction Using Fuzzy Neural Network Model Based on SPT. Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, 27-31 August 2001.
[12] Seed, H.B. and Idriss, I.M. (1971) Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, 97, 1249-1273.
[13] Liang, L. (1995) Development of an Energy Method for Evaluating the Liquefaction Potential of a Soil Deposit. Ph.D. Dissertation, Department of Civil Engineering, Case Western Reserve University, Cleveland.
[14] Kim, Y.-S. and Kim, B.-T. (2006) Use of Artificial Neural Networks in the Prediction of Liquefaction Resistance of Sands. Journal of Geotechnical and Geoenvironmental Engineering, 132, 1502-1504.
http:///dx.doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1502)
[15] Sharafi, H. (2010) Evaluation of Lique-faction Potential and Earthquake-Induced Excess Pore Pressure in Silty Soils Using Energy Measures. Ph.D. Dissertation, School of Civil Engineering, Iran University of Science and Technology, Tehran.
[16] Baziar, M.H. and Sharafi, H. (2011) Assessment of Silty Sand Liquefaction Potential Using Hollow Torsional Tests— An Energy Approach. Soil Dynamics and Earthquake Engineering, 31, 857-865.
http:///dx.doi.org/10.1016/j.soildyn.2010.12.014
[17] Baziar, M.H., Shahnazari, H. and Sharafi, H. (2011) A Laboratory Study on the Pore Pressure Generation Model for Firouzkooh Silty Sands Using Hollow Torsional Test. International Journal of Civil Engineering, 9, 126-134.
[18] Green, R.A. (2001) Energy-Based Evaluation and Re-mediation of Liquefiable Soils. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Black-sburg.
[19] Xenaki, V.C. and Athanasopoulos, G.A. (2003) Liquefaction Resistance of Sand-Silt Mixtures: An Expe-rimental Investigation of the Effect of Fines. Soil Dynamics and Earthquake Engineering, 23, 183-194.
http:///dx.doi.org/10.1016/S0267-7261(02)00210-5
[20] Kanagalingam, T. (2006) Liquefaction Resistance of Granular Mixes Based on Contact Density and Energy Considerations. Ph.D. Dissertation, The State University of New York at Buffalo, Buffalo.
[21] Zhou, Y.-G. and Chen, Y.-M. (2007) Laboratory Investigation on Assessing Li-quefaction Resistance of Sandy Soils by Shear Wave Velocity. J Soil Dyn Earthquake Eng, 21.
[22] Houng, Y.-T., Huang, A.-B., Kuo, Y.-Ch. and Tsai, M.-D. (2004) A Laboratory Study on the Undrained Strength of a Silty Sand from Central Western Taiwan. Soil Dynamics and Earthquake Engineering, 24, 733-743.
http:///dx.doi.org/10.1016/j.soildyn.2004.06.013
[23] Silver, M.L., Chan, C.K., Ladd, R.S., Lee, K.L., Tiedemann, D.A., Townsend, F.C., Valera, J.E. and Wilson, J.H. (1976) Cyclic Triaxial Strength of Standard Test Sand. Journal of the Geotechnical Engineering Division, 102, 511-523.
[24] Carraro, J.A.H., Bandini, P. and Salgado, R. (2003) Liquefaction Resistance of Clean and NonplasticSilty Sands Based on Cone Penetration Resistance. Journal of the Geotechnical Engineering Division, 129, 965-976.
http:///dx.doi.org/10.1061/(ASCE)1090-0241(2003)129:11(965)
[25] Amini, F. and Qi, G.Z. (2000) Liquefaction Testing of Stratified Silty Sands. Journal of the Geotechnical Engineering Division, 126, 208-217.
http:///dx.doi.org/10.1061/(ASCE)1090-0241(2000)126:3(208)
[26] Dief, H.M. (2000) Evaluating the Liquefac-tion Potential of Soils by the Energy Method in the Centrifuge. Ph.D. Dissertation, Department of Civil Engineering, Case Western Reserve University, Cleveland.
[27] Ishihara, K. and Yasuda, S. (1975) Sand Liquefaction in Hollow Cylinder Torsion under Irregular Excitation. Soils and Foundations, 15, 45-59.
http:///dx.doi.org/10.3208/sandf1972.15.45
[28] Lade, P.V. and Yamamuro, J.A. (1997) Effects of Non-Plastic Fines on Static Liquefaction of Sands. Canadian Geotechnical Journal, 34, 918-928.
http:///dx.doi.org/10.1139/t97-052
[29] Thevanayagam, S., Ravishankar, K. and Mohan, S. (1997) Effects of Fines on Monotonic Undrained Shear Strength of Sandy Soils. Geotechnical Testing Journal, 20, 394-406.
http:///dx.doi.org/10.1520/GTJ10406J
[30] Thevanayagam, S. (1998) Effect of Fines and Confining Stress on Undrained Shear Strength of Silty Sands. Journal of the Geotechnical Engineering Division, 124, 479-491.
http:///dx.doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
[31] Koester, J.P. (1994) The Influence of Fine Type and Content on Cyclic Strength. Ground Failures under Seismic Conditions. Geotechnical Special Publication, No. 44, 330-345.
[32] Hazirbaba, K. (2005) Pore Pressure Generation Characteristics of Sands and Silty Sands: A Strain Approach. Ph.D. Thesis, University of Texas at Austin, Austin.
[33] Polito, C.P. (1999) The Effects of Non-Plastic and Plastic Fines on the Liquefaction of Sandy Soils. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg.
[34] Polito, C.P. and Martin II, J.R. (2001) Effects of Non-Plastic Fines on the Liquefaction Resistance of Sands. Journal of the Geotechnical Engineering Division, 127, 408-415.
http:///dx.doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)
[35] Lee, K.L. and Seed, H.B. (1967) Cyclic Stress Conditions Causing Liquefaction of Sand. Journal of the Soil Mechanics and Foundations Division, 93, 47-70.
[36] Garson, G.D. (1991) Interpreting Neural Network Connection Weights. AI Expert, 6, 47-51.