[1] Park, T. and Casella, G. (2008) The Bayesian lasso. Journal of the American Statistical Association, 103, 681-686.
http://dx.doi.org/10.1198/016214508000000337
[2] Tomlins, S.A., Mehra, R., et al. (2007) Integrative Molecular Concept Modeling of Prostate Cancer Progression. Nature Genetics, 39, 41-51.
http://dx.doi.org/10.1038/ng1935
[3] Xu, L., Furlotte, N., Lin, Y., Heinrich, K., Berry, M.W., George, E.O. and Homayouni, R. (2011) Functional Cohesion of Gene Sets Determined by Latent Semantic Indexing of PubMed Abstracts. PLoS ONE, 6, Article ID: e18851.
[4] Cao, J. and Zhang, S. (2010) Measuring Statistical Significance for Full Bayesian Methods in Microarray Analyses. Bayesian Analysis, 5, 413-427.
http://dx.doi.org/10.1214/10-BA608
[5] Devore, J. and Peck, R. (1997) Statistics: The Exploration and Analysis of Data. Duxbury Press, Pacific Grove.
[6] Thomas, J.G., Olson, J.M., Tapscott, S.J. and Zhao, L.P. (2001) An Efficient and Robust Statistical Modeling Approach to Discover Differentially Expressed Genes Using Genomic Expression Profiles. Genome Research, 11, 1227-1236.
http://dx.doi.org/10.1101/gr.165101
[7] Pan, W. (1996) A Comparative Review of Statistical Methods for Discovering Differentially Expressed Genes in Replicated Microarray Experiments. Bioinformatics, 18, 546-554.
http://dx.doi.org/10.1093/bioinformatics/18.4.546
[8] Dudoit S., Fridlyand, J. and Speed, T.P. (2002) Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. Journal of the American Statistical Association, 97, 77-87.
http://dx.doi.org/10.1198/016214502753479248
[9] Troyanskaya, O.G., Garber, M.E., Brown, P., Botstein, D. and Altman, R.B. (2002) Nonparametric Methods for Identifying Differentially Expressed Genes in Microarray Data. Bioinformatics, 18, 1454-1461.
http://dx.doi.org/10.1093/bioinformatics/18.11.1454
[10] Bae, K. and Mallick, B.K. (2004) Gene Selection Using a Two-Level Hierarchical Bayesian Model. Bioinformatics, 20, 3423-3430.
http://dx.doi.org/10.1093/bioinformatics/bth419
[11] Logsdon, B.A., Hoffman, G.E. and Mezey, J.G. (2010) A Variational Bayes Algorithm for Fast and Accurate Multiple Locus Genome-Wide Association Analysis. BMC Bioinformatics, 11, 58.
http://dx.doi.org/10.1186/1471-2105-11-58
[12] Wu, T.T., Chen, Y.F., Hastie, T., Sobel, E. and Lange, K. (2009) Genome-Wide Association Analysis by Lasso Penalized Logistic Regression. Bioinformatics, 25, 714-721.
http://dx.doi.org/10.1093/bioinformatics/btp041
[13] Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden, P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., Goddard, M.E. and Visscher, P.M. (2010) Common SNPs Explain a Large Proportion of the Heritability for Human Height. Nature Genetics, 42, 565-569.
http://dx.doi.org/10.1038/ng.608
[14] Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 58, 267-288.
[15] Li, J.H., Das, K., Fu, G.F., Li, R.Z. and Wu, R.L. (2011) The Bayesian Lasso for Genome-Wide Association Studies. Bioinformatics, 27, 516-523.
http://dx.doi.org/10.1093/bioinformatics/btq688
[16] Zou, H. (2006) The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, 101, 1418-1429.
http://dx.doi.org/10.1198/016214506000000735
[17] Nott, D.J. and Leng, C. (2010) Bayesian Projection Approaches to Variable Selection in Generalized Linear Models. Computational Statistics & Data Analysis, 54, 3227-3241.
http://dx.doi.org/10.1016/j.csda.2010.01.036
[18] Yi, N. and Xu, S. (2008) Bayesian LASSO for Quantitative Loci Mapping. Genetics, 179, 1045-1055.
http://dx.doi.org/10.1534/genetics.107.085589
[19] Fan, J. and Li, R. (2001) Variable Selection via Nonconcave Penalized Likelihoodand Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360.
http://dx.doi.org/10.1198/016214501753382273
[20] Ye, J.P., Li, T., Xiong, T. and Janardan, R. (2004) Using Uncorrelated Discriminant Analysis for Tissue Classification with Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 1, 181-190.
[21] Calvo, A., Xiao, N., Kang, J., Best, C.J., Leiva, I., Emmert-Buck, M.R., Jorcyk, C. and Green, J.E. (2002) Alterations in Gene Expression Profiles during Prostate Cancer Progression: Functional Correlations to Tumorigenicity and Down- Regulation of Selenoprotein-P in Mouse and Human Tumors. Cancer Research, 62, 5325-5335.
[22] Dalgin, G.S., Alexe, G., Scanfeld, D., Tamayo, P., Mesirov, J.P., Ganesan, S., DeLisi, C. and Bhanot, G. (2007) Portraits of Breast Cancer Progression. BMC Bioinformatics, 8, 291.
http://dx.doi.org/10.1186/1471-2105-8-291
[23] Pyon, Y.S. and Li, J. (2009) Identifying Gene Signatures from Cancer Progression Data Using Ordinal Analysis. BIBM ‘09. IEEE International Conference on Bioinformatics and Biomedicine, Washington DC, 1-4 November 2009, 136-141.
[24] Hans, C. (2009) Bayesian Lasso Regression. Biometrika, 96, 835-845.
http://dx.doi.org/10.1093/biomet/asp047
[25] Nelder, J. and Wedderburn, R. (1972) Generalized Linear Models. Journal of the Royal Statistical Society, 135, 370-384.
http://dx.doi.org/10.2307/2344614
[26] McCullagh, P. and Nelder, J. (1989) Generalized Linear Models. Chapman and Hall, London.
[27] Madsen, H. and Thyregod, P. (2011) Introduction to General and Generalized Linear Models. Chapman & Hall/CRC, London.
[28] Pike, M.C., Hill, A.P. and Smith, P.G. (1980) Bias and Efficiency in Logistic Analysis of Stratified Case-Control Studies. International Journal of Epidemiology, 9, 89-95.
[29] Knight, K. and Fu, W. (2000) Asymptotics for Lasso-Type Estimators. The Annals of Statistics, 28, 1356-1378.
http://dx.doi.org/10.1214/aos/1015957397
[30] Xu, H., Caramanis, C. and Mannor, S. (2010) Robust Regression and Lasso. IEEE Transactions on Information Theory, 56, 3561-3574.
http://dx.doi.org/10.1109/TIT.2010.2048503
[31] Gilks, W., Richardson, S. and Spiegelhalter, D. (1996) Markov Chain Monte Carlo in Practice. Chapman and Hall, London.
[32] Gelfand, A. and Smith, A.F.M. (1990) Sampling-Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association, 85, 398-409.
http://dx.doi.org/10.1080/01621459.1990.10476213
[33] Albert, J. and Chib, S. (1993) Bayesian Analysis of Binary and Polychotomous Response Data. Journal of the American Statistical Association, 88, 669-679.
http://dx.doi.org/10.1080/01621459.1993.10476321
[34] Benjamini, Y. and Hochberg, Y. (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B, 57, 289-300.
[35] Karatzoglou, A., Smola, A., Hornik, K. and Zeileis, A. (2004) kernlab—An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 1-20.
http://www.jstatsoft.org/v11/i09/
[36] Liaw, A. and Wiener, M. (2002) Classification and Regression by Random Forest. R News, 2, 18-22.
[37] Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
http://dx.doi.org/10.1023/A:1010933404324
[38] Boulesteix, A.L., Janitza, S., Kruppa, J. and König, I.R. (2012) Overview of Random Forest Methodology and Practical Guidance with Emphasis on Computational Biology and Bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2, 493-507.
http://dx.doi.org/10.1002/widm.1072
[39] Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. and Mesirov, J.P. (2005) Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proceedings of the National Academy of Sciences of the United States of America, 102, 15545-15550.
http://dx.doi.org/10.1073/pnas.0506580102