OJCE  Vol.4 No.3 , September 2014
Flexural Performance of I-Joist Fabricated with Glue-Laminated Bamboo and Gmelina arborea Plywood
ABSTRACT

The search for efficient and versatile structural elements, leads to the fabrication of I-joists (6.5 cm × 18.5 cm × 600 cm (width × depth × length) with glue-laminated bamboo (Guada angustifolia) in the flanges and Gmelina arborea 12-mm structural plywood in the web. The results showed a modulus of rupture (MOR) of 39.45 MPa and an effective modulus of elasticity (MOE) of 17.05 GPa. Shearing in the glue line was 5.95 MPa and the lamination strength was 6.45 MPa. Structural design values averaged 9.43 MPa for bending and 4.72 MPa in shear according to Costa Rican structural standards. Both resistance value (flexure and shear) were considered satisfactory for structural proposes and I-joists fabricated with bamboo and G. arborea plywood are comparable with the Andean classification group “C” structural grade. The use of this I-joist was also shown in roofing and flooring systems. This beam can be used in allowable spans from 2 to 4 m in span for flooring systems and from 5 to 7 m for roofing applications.


Cite this paper
Paniagua, V. and Moya, R. (2014) Flexural Performance of I-Joist Fabricated with Glue-Laminated Bamboo and Gmelina arborea Plywood. Open Journal of Civil Engineering, 4, 209-216. doi: 10.4236/ojce.2014.43018.
References
[1]   López, L.C. and Correa, L.(2009) Estudio exploratorio de los laminados de bambú guadua angustifolia como material estructural, Madera. Ciencia y Tecnología, 11, 171-182.

[2]   Wei, Y., Jiang, S.X., Fang, Q., Sheng, Q., Wang, L.B. and Zhi, T.L. (2011) Flexural Performance of Glued Laminated Bamboo Beams. Advance Materials Research, 168-170, 1700-1703.

[3]   Aschheim, M., Gil-Martín, L.M. and Hernández-Montes, E. (2010) Engineered Bamboo I-Joists. Journal of Structural Engineering, 136, 619-1624.
http:///dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000235

[4]   Moya, R., Tenorio, C., Carranza, M., Camacho, D. and Quesada-Pineda, H. (2013) Structural Performance of I-Beam Fabricated of Gmelina arborea from Fast Growing Trees. Journal Tropical of Forest Science, 25, 151-156.

[5]   Deras, J.E., Stoian, D. and Morales, D. (2006) Análisis de la Cadena Productiva del Bambú en Costa Rica: Potencial de desarrollo de un recurso subutilizado en América Latina. Recursos Naturales y Ambiente, 46,127-136.

[6]   Nugroho, N. and Ando, N. (2000) De-velopment of Structural Composite Products Made from Bamboo II: Fundamental Properties of Laminated Bamboo Lumber. Journal of Wood Science, 47, 237-242.
http:///dx.doi.org/10.1007/BF01171228

[7]   Xiao, Y., Shan, B., Chen, G., Zhou, Q. and She, L.Y. (2008) Development of a New Type of Glulam-GluBam. Proceedings of the International Conference on Modern Bamboo Structures, London, 6-9 October 2008, 41-47. Taylor & Francis Group.

[8]   Gere, L. (2009) Mecánica de materiales. 7ma Edición, Cengage Learning, México.

[9]   Aydin, I., Colak, S., Colakoglu, G. and Salih, E. (2004) Comparative Study on Some Physical and Mechanical Properties of Laminated Veneer Lumber (LVL) Produced from Beech (Fagus orientalis Lipsky) and Eucalyptus (Eucalyptus camaldulensis Dehn) Veneers. Holz als Roh- und Werkstoff, 62, 218-220.

[10]   Leichti, R.J., Falk, R.H. and Laufenberg, T.L. (1990) Prefabricated Wood I-Joist: An Industry Overview. Forest Products Journal, 40, 15-20.

[11]   Maloney, T.M. (1996) The Family of Wood Composite Materials. Forest Products Journal, 46, 19-26.

[12]   Sotela, G. (1991) Propiedades físico mecánicas de la especie guadua en Costa Rica. Proyecto Nacional del Bambú Aprovechamiento del Bambú en la construcción de vivienda de interés social. Informe Técnico, Universidad de Costa Rica, San José Costa Rica.

[13]   Tenorio, C., Moya, R. and Muñoz, F. (2011) A Comparative Study on Physical and Mechanical Properties of LVL and Plywood Panels Made of Wood from Fast Growing Gmelina arborea Trees. Journal of Wood Science, 57,134-139.
http:///dx.doi.org/10.1007/s10086-010-1149-7

[14]   Salas, C., Moya, R. and Córdoba, R. (2008) Diseoñ y construcción de un secador solar para madera. Kurú: Revista Forestal, 5, 1-13.

[15]   ASTM (2005) D198-09 Standard Test Methods of Static Test of Timber Structure Sizes. American Society for Testing and Materials, West Conshohocken.

[16]   ASTM (2005) D905-08e1 Standard Test Method for Strength Properties of Adhesive Bonds in Shear by Compression Loading. American Society for Testing and Materials, West Conshohocken.

[17]   CFIA-Colegio Federado de Ingenieros y Arquitectos de Costa Rica (2010) Códigosísmico de Costa Rica. Editorial Tecnológica, Cartago.

[18]   AITIM-Asociación de Investigación Técnica de la Industria de la Madera y Corcho (2003), Madrid, Espana: Estructuras de madera diseño y cálculo. AITIM Editorial.

[19]   American Wood Council (2005) National Design Specification for Wood Construction. Leesburg, VA. USA.

[20]   Barreto, W. (2003) Evaluación de la guadua laminada pegada aplicada a propuesta de reticulado plano. Universidad Nacional de Colombia. Facultad de Artes. Escuela de Arquitectura y Urbanismo, Colombia.

[21]   Pedrosa, D.L.A., Iwakiri, S. and Monteiro, J.L. (2005) Producão de vigas estruturais em perfil “I” com painéis de madeira reconstituída de Pinus taeda L. e EucalyptusdunniiMaiden. Floresta, 35, 443-449.

[22]   Keenan, F.J. and Tejada, M. (1987) Maderas tropicales como material de construcción en los países del grupo andino de América del Sur. Ottawa, Canada.

 
 
Top