EPE  Vol.3 No.2 , May 2011
Behaviour of Thermodynamic Models with Phase Change Materials under Periodic Conditions
Abstract: We study the thermal behaviour of some models in a steady periodic regime. The aim is to simulate the be-haviour of small environments at the outermost part of our planet, subjected to the periodic solar radiation. Our approach is based on a method using lumped elements or volumes that simplifies the description of spa-tially distributed physical systems, through a topology consisting of discrete entities. Our models include some parts acting as energy storage systems, made with Phase Change Materials (PCMs). The storage is based on latent heats: the energy is stored during the melting and recovered during the solidification of the PCM substance. The simulation with lumped elements shows some interesting behaviours of temperatures.
Cite this paper: nullA. Sparavigna, S. Giurdanella and M. Patrucco, "Behaviour of Thermodynamic Models with Phase Change Materials under Periodic Conditions," Energy and Power Engineering, Vol. 3 No. 2, 2011, pp. 150-157. doi: 10.4236/epe.2011.32019.

[1]   E. A. G. Schuur, J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman and T. E. Osterkamp, “The Effect of Permafrost Thaw on Old Carbon Release and Net Carbon Exchange from Tundra,” Nature, Vol. 459, No. 7246, 2009, pp.556-559. doi:10.1038/nature08031

[2]   G. A. Lane, “Solar Heat Storage: Latent Heat Materials,” CRC Press, Boca Raton, 1983.

[3]   H. P. Garg, S. C. Mullick and A. K. Bhargava, “Solar Thermal Energy Storage,” D. Reidel Publishing Company, Dordecht, 1985.

[4]   I. Dincer and M. A. Rosen, “Thermal Energy Storage, Systems and Applications,” John Wiley & Sons, New York, 2002.

[5]   A. Abhat, “Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials,” Solar Energy, Vol. 30, No. 14, 1983, pp. 313-332. doi:10.1016/0038-092X(83)90186-X

[6]   S. M. Hasnain, “Review on Sustainable Thermal Energy Storage Technologies. Part I: Heat Storage Materials and Techniques,” Energy Conversion and Management, Vol. 39, No. 11, 1998, pp. 1127-1138. doi:10.1016/S0196-8904(98)00025-9

[7]   H. E. Faith, “Technical Assessment of Solar Thermal Energy Storage Technologies,” Renewable Energy, Vol. 14, No. 1-4, 1998, pp. 35-40. doi:10.1016/S0960-1481(98)00044-5

[8]   B. Zalba, J. M. Marin, L. F. Cabeza and H. Mehling, “Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications,” Applied Thermal Engineering, Vol. 23, No. 3, 2003, pp. 251-283. doi:10.1016/S1359-4311(02)00192-8

[9]   H. M. Ettouney, I. Alatigi, M. Al-Sahali and S. A. Al-Ali, “Heat Transfer Enhancement by Metal Screens and Metal Spheres in Phase Change Energy Storage Systems,” Renewable Energy, Vol. 29, No. 6, 2004, pp. 841-860. doi:10.1016/j.renene.2003.11.003

[10]   M. M Farid, A. M. Khudhair, S. A. K. Razack and S. Al-Hallaj, “A Review on Phase Change Energy Storage Materials and Applications,” Energy Conversion and Management, Vol. 45, No. 9-10, 2004, pp. 1597-1615. doi:10.1016/j.enconman.2003.09.015

[11]   S. D. Sharma and K. Sagara, “Latent Heat Storage Materials and Systems: A Review,” International Journal of Green Energy, Vol. 2, No. 1, 2005, pp. 1-56. doi: 10.1081/GE-200051299

[12]   T. Nomura, N. Okinaka and T. Akiyama, “Technology of Latent Heat Storage for High Temperature Application: A Review,” The Iron and Steel Institute of Japan, Vol. 50, No. 9, 2010, pp. 1229-1239. doi:10.2355/isijinternational.50.1229

[13]   A Sharma, V. Tyagi, C. Chen and D. Buddhi, “Review on Thermal Energy Storage with Phase Change Materials and Applications,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, 2009, pp. 318-345. doi:10.1016/j.rser.2007.10.005

[14]   M. Akgün, O. Ayd?n and K. Kaygusuz, “Experimental Study on Melting/Solidification Characteristics of a Paraffin as PCM,” Energy Conversion and Management, Vol. 48, No. 2, 2007, pp. 669-678. doi:10.1016/j.enconman.2006.05.014

[15]   A. Sar? and K. Kaygusuz, “Thermal and Heat Transfer Characteristics in a Latent Heat Storage System Using Lauric Acid,” Energy Conversion and Management, Vol. 43, No. 18, 2002, pp. 2493-2507. doi:10.1016/S0196-8904(01)00187-X

[16]   H. Mehling, S. Hiebler and E. Günther, “New Method to Evaluate the Heat Storage Density in Latent Heat Storage for Arbitrary Temperature Ranges,” Applied Thermal Engineering, Vol. 30, No. 17-18, 2010, pp. 2652-2657. doi:10.1016/j.applthermaleng.2010.07.012

[17]   F. Agyenim, N. Hewitt, P. Eames and M. Smyth, “A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS),” Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, 2010, pp. 615-628. doi:10.1016/j.rser.2009.10.015

[18]   V. V. Tyagia, S. C. Kaushika, S. K. Tyagib and T. Akiyama, “Development of Phase Change Materials Based Microencapsulated Technology for Buildings: A Review,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 2, 2011, pp. 1373-1391. doi:10.1016/j.rser.2010.10.006

[19]   L. F. Cabeza, C. Castellon, M. Bogues, M. Medrano, P. Leppers and O. Zubillage, “Use of Microencapsulated PCM in Concrete Walls for Energy Savings,” Energy and Buildings, Vol. 39, No. 2, 2007, pp. 113-119. doi:10.1016/j.enbuild.2006.03.030

[20]   Y. Yamagishi, H. Takeuchi, A. T. Pyatenko and N. Kayukawa, “Characteristics of Microencapsulated PCM Slurry as a Heat-Transfer Fluid,” AIChE Journal, Vol. 45, No. 4, 1999, pp. 696-707. doi: 10.1002/aic.690450405

[21]   D. Banu, D. Feldman, F. Haghighat, J. Paris and D. Hawes, “Energy-Storing Wallboard: Flammability Tests,” Journal of Material in Civil Engineering, Vol. 10, No. 2, 1998, pp. 98-105. doi:10.1061/(ASCE)0899-1561(1998)10:2(98)

[22]   I. O. Salyer, A. K. Sircar, R. P. Chartoff and D. E. Miller, “Advanced phase-change materials for passive solar storage applications,” Proceedings of the 20th Intersociety Energy Conversion Engineering Conference, Warrendale, 1995, pp. 699-709.

[23]   M. Shapiro, D. Feldman, D. Hawes and D. Banu, “PCM Thermal Storage in Drywall Using Organic Phase Change Material,” Passive Solar Journal, Vol. 4, No. 4, 1987, pp. 419-438.

[24]   M. W. Babich, R. Benrashid and R. D.Mounts, “DSC Studies of Energy Storage Materials. Part 3: Thermal and Flammability Studies,” Thermochimica Acta, Vol. 243, No. 2, 1994, pp. 193-200. doi:10.1016/0040-6031(94)85054-2

[25]   D. A. Neeper, “Thermal Dynamics of Wallboard with Latent Heat Storage,” Solar Energy, Vol. 68, No. 5, 2000, pp. 393-403. doi:10.1016/S0038-092X(00)00012-8

[26]   S. Medved and C. Arkar, “Correlation between the Local Climate and the Free-Cooling Potential of Latent Heat Storage,” Energy and Buildings, Vol. 40, No. 4, 2008, pp. 429-437. doi:10.1016/j.enbuild.2007.03.011

[27]   V. A. A. Raj and R. Velraj, “Review on free Cooling of Buildings Using Phase Change Materials,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 9, 2010, pp. 2819-2829. doi:10.1016/j.rser.2010.07.004

[28]   A. Pasupathy, R. Velraj and R. V. Seeniraj, “Phase Change Material-Based Building Architecture for Thermal Management in Residential and Commercial Establishments,” Renewable and Sustainable Energy Reviews, Vol. 12, No. 1, 2008, pp. 39-64. doi:10.1016/j.rser.2006.05.010

[29]   M. G. Davies, “Building Heat Transfer,” John Wiley & Sons, Inc., New York, 2004.

[30]   L. Sertorio, “Thermodynamics Equations of a Black Planet with Nearest-Neighbour Surface Carnot Interaction,” Nuovo Cimento, Vol. 3, No. 1, 1980, pp. 37-44. doi: 10.1007/BF02509189

[31]   R. S. Berry, F. d’Isep and L. Sertorio, “Behaviour of a Thermodynamic Model System under Time-Dependent Periodic Boundary Conditions,” Nuovo Cimento, Vol. 5, No. 3, pp. 332-358, 1982. doi: 10.1007/BF02509144

[32]   Ashrae “Handbook and Product Directory 1977 Fundamentals,” American society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., New York, 1980.

[33]   M. Jaworski and R. Domanski, “A Novel Design of Heat Sink with PCM for Electronic Cooling,” 10th International Conference on Thermal Energy Storage, Stockton, May 31-June 2, 2006.