[1] Poinsot, T., Echekki, T. and Mungal, M.G. (1992) A Study of the Laminar Flame Tip and Implications for Premixed Turbulent Combustion. Combustion Science and Technology, 81, 45-73.
http://dx.doi.org/10.1080/00102209208951793
[2] Haworth, D.C. and Poinsot, T.J. (1992) Numerical Simulations of Lewis Number Effects in Turbulent Premixed Flames. Journal of Fluid Mechanics, 244, 405-436.
http://dx.doi.org/10.1017/S0022112092003124
[3] Rutland, C.J. and Trouvé, A. (1993) Direct Simulations of Premixed Turbulent Flames with Nonunity Lewis Numbers. Combustion and Flame, 94, 41-57.
http://dx.doi.org/10.1016/0010-2180(93)90018-X
[4] Chen, J.H. and Im, H.G. (2000) Stretch Effects on the Burning Velocity of Turbulent Premixed Hydrogen/Air Flames. Proceedings of the Combustion Institute, 28, 211-218.
http://dx.doi.org/10.1016/S0082-0784(00)80213-1
[5] Bell, J.B., Cheng, R.K., Day, M.S. and Shepherd, I.G. (2007) Numerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames. Proceedings of the Combustion Institute, 31, 1309-1317.
http://dx.doi.org/10.1016/j.proci.2006.07.216
[6] Day, M., Tachibana, S., Bell, J., Lijewski, M., Beckner, V. and Cheng, R.K. (2012) A Combined Computational and Experimental Characterization of Lean Premixed Turbulent Low Swirl Laboratory Flames I. Methane Flames. Combustion and Flame, 159, 275-290.
http://dx.doi.org/10.1016/j.combustflame.2011.06.016
[7] Han, I. and Huh, K.Y. (2008) Roles of Displacement Speed on Evolution of Flame Surface Density for Different Turbulent Intensities and Lewis Numbers in Turbulent Premixed Combustion. Combustion and Flame, 152, 194-205.
http://dx.doi.org/10.1016/j.combustflame.2007.10.003
[8] Tsuboi, K., Nishiki, S. and Hasegawa, T. (2008) An Analysis of Local Quantities of Turbulent Premixed Flames Using DNS Databases. Journal of Thermal Science and Technology, 3, 103-111.
http://dx.doi.org/10.1299/jtst.3.103
[9] Poinsot, T.J. and Lele, S.K. (1992) Boundary Conditions for Direct Simulations of Compressible Viscous Flows. Journal of Computational Physics, 101, 104-129.
http://dx.doi.org/10.1016/0021-9991(92)90046-2
[10] Baum, M., Poinsot, T. and Thévenin, D. (1995) Accurate Boundary Conditions for Multicomponent Reactive Flows. Journal of Computational Physics, 116, 247-261.
http://dx.doi.org/10.1006/jcph.1995.1024
[11] Peters, N. (1999) The Turbulent Burning Velocity for Large-Scale and Small-Scale Turbulence. Journal of Fluid Mechanics, 384, 107-132.
http://dx.doi.org/10.1017/S0022112098004212
[12] Nishiki, S., Hasegawa, T., Borghi, R. and Himeno, R. (2002) Analyzing and Modeling of Transport Properties of Turbulent Kinetic Energy and Turbulent Scalar Flux in Turbulent Premixed Flames by DNS. Journal of the Combustion Society of Japan, 48, 47-57. (in Japanese)
[13] Nishiki, S., Hasegawa, T., Borghi, R. and Himeno, R. (2006) Modelling of Turbulent Scalar Flux in Turbulent Premixed Flames Based on DNS Databases. Combustion Theory and Modelling, 10, 39-55.
http://dx.doi.org/10.1080/13647830500307477
[14] Nishiki, S. (2003) DNS and Modeling of Turbulent Premixed Combustion. Doctoral Thesis, Nagoya Institute of Technology, Nagoya.
[15] Tsuboi, K., Tomita, E. and Hasegawa, T. (2014) DNS Analysis on the Correlation between Local Burning Velocity and Flame Displacement Speed of Turbulent Premixed Flames. Journal of Thermal Science and Technology (Submitted).