APM  Vol.4 No.8 , August 2014
Weierstrass’ Elliptic Function Solution to the Autonomous Limit of the String Equation of Type (2,5)*
Author(s) Yoshikatsu Sasaki*
ABSTRACT

In this article, we study the string equation of type (2,5), which is derived from 2D gravity theory or the string theory. We consider the equation as a 4th order analogue of the first Painlevé equation, take the autonomous limit, and solve it concretely by use of the Weierstrass’ elliptic function.


Cite this paper
Sasaki, Y. (2014) Weierstrass’ Elliptic Function Solution to the Autonomous Limit of the String Equation of Type (2,5)*. Advances in Pure Mathematics, 4, 494-497. doi: 10.4236/apm.2014.48055.
References
[1]   Douglas, M.R. (1990) String in Less than One-Dimensions and K-dV Hierarchies. Physics Letters B, 238, 176-180.
http://dx.doi.org/10.1016/0370-2693(90)91716-O

[2]   Moore, G. (1990) Geometry of the String Equations. Communications in Mathematical Physics, 133, 261-304.
http://dx.doi.org/10.1007/BF02097368

[3]   Moore, G. (1991) Matrix Models of 2D Gravity and Isomonodromic Deformations. Progress of Theoretical Physics Supplement, 102, 255-285. http://dx.doi.org/10.1143/PTPS.102.255

[4]   Fukuma, M., Kawai, H. and Nakayama, R. (1991) Infinite Dimensional Grassmannian Structure of Two Dimensional String Theory. Communications in Mathematical Physics, 143, 371-403.
http://dx.doi.org/10.1007/BF02099014

[5]   Kac, V. and Schwarz, A. (1991) Geometric Interpretation of Partition Functions of 2D Gravity. Physics Letters B, 257, 329-334. http://dx.doi.org/10.1016/0370-2693(91)91901-7

[6]   Schwarz, A. (1991) On Solutions to the String Equations. Modern Physics Letters A, 29, 2713-2725.
http://dx.doi.org/10.1142/S0217732391003171

[7]   Adler, M. and van Moerbeke, P. (1992) A Matrix Integral Solution to Two-Dimensional Wp-Gravity. Communications in Mathematical Physics, 147, 25-26. http://dx.doi.org/10.1007/BF02099527

[8]   van Moerbeke, P. (1994) Integrable Foudations of String Theory. In: Babelon, O., et al., Ed., Lectures on Integrable Systems, World Science Publisher, Singapore, 163-267.

[9]   Takasaki, K. (2007) Hamiltonian Structure of PI Hierarchy. SIGMA, 3, 42-116.

[10]   Ince, E.L. (1956) Ordinary Differential Equations. Dover Publications, New York.

[11]   Conte, R. and Mussette, M. (2008) The Painlevé Handbook. Springer Science + Business Media B.V., Dordrecht.

[12]   Weiss, J. (1984) On Classes of Integrable Systems and the Painlevé Property. Journal of Mathematical Physics, 25, 13-24. http://dx.doi.org/10.1063/1.526009

[13]   Kudryashov, N.A. (1997) The First and Second Painlevé Equations of Higher Order and Some Relations between Them. Physics Letters A, 224, 353-360. http://dx.doi.org/10.1016/S0375-9601(96)00795-5

[14]   Gromak, V.I., Laine, I. and Shimomura, S. (2002) Painlevé Differential Equations in the Complex Plane. Walter de Gruyter, Berlin. http://dx.doi.org/10.1515/9783110198096

[15]   Shimomura, S. (2004) Poles and α-Points of Meromorphic Solutions of the First Painlevé Hierarchy. Publications of the Research Institute for Mathematical Sciences, Kyoto University, 40, 471-485.
http://dx.doi.org/10.2977/prims/1145475811

[16]   Kimura, H. (1989) The Degeneration of the Two Dimensional Garnier System and the Polynomial Hamiltonian Structure. Annali di Matematica Pura ed Applicata, 155, 25-74.
http://dx.doi.org/10.1007/BF01765933

[17]   Suzuki, M. (2006) Spaces of Initial Conditions of Garnier System and Its Degenerate Systems in Two Variables. Journal of the Mathematical Society of Japan, 58, 1079-1117.
http://dx.doi.org/10.2969/jmsj/1179759538

[18]   Shimomura, S. (2000) Painlevé Property of a Degenerate Garnier System of (9/2)-Type and a Certain Fourth Order Non-Linear Ordinary Differential Equation. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 29, 1-17.

 
 
Top