OPJ  Vol.4 No.8 , August 2014
Studies of Electron Energy Distribution Function (EEDF) in Lithium Vapor Excitation at 2S→3D Two-Photon Resonance
ABSTRACT

We have developed a computational model which quantitatively studies the Electron Energy Distribution Function (EEDF) in laser excited lithium vapor at 2s→3d two-photon resonance. A kinetic model has been constructed which includes essentially all the important collisional ionization, photoionization, electron collisions and radiative interactions that come into play when lithium vapor (density range 1013 - 1014 cm-3) is subject to a sudden pulse of intense laser radiation (power range 105 - 106 W·cm-2) at wavelength 639.1 nm and pulse duration 20 ns. The applied computer simulation model is based on the numerical solution of the time-dependent Boltzman equation and a set of rate equations that describe the rate of change of the formed excited states populations. Using the measured values for the cross-sections and rate coefficients of each physical process considered in the model available in literature, relations are obtained as a function of the electron energy and included in the computational model. We have also studied the time evolution and the laser power dependences of the ion population (atomic and molecular ions) as well as the electron density which are produced during the interaction. The energy spectra of the electrons emerging from the interaction contains a number of peaks corresponding to the low-energy electrons produced by photoionization and collisional ionization such as assosicative and Penning ionization processes. The non-equilibrium shape of these electrons occurs due to relaxation of fast electrons produced by super-elastic collisions with residual excited lithium atoms. Moreover, a reasonable agreement between McGeoch results and our calculations for the temporal behaviour of the electron density is obtained.


Cite this paper
Mahmoud, M. and Hamam, K. (2014) Studies of Electron Energy Distribution Function (EEDF) in Lithium Vapor Excitation at 2S→3D Two-Photon Resonance. Optics and Photonics Journal, 4, 195-212. doi: 10.4236/opj.2014.48020.
References
[1]   Gorbunov, N.A., Grochola, A., Kruk, P., Pietruczuk, A. and Stacewicz, T. (2002) Studies of Electron Energy Distribution in Plasma Produced by a Resonant Laser Pulse. Plasma Sources Science and Technology, 11, 492-497.
http://dx.doi.org/10.1088/0963-0252/11/4/316

[2]   Hassanien, A., Sizyuk, V. and Sizuk, T. (2011) The Effect of Critical Plasma Densities of Laser-Produced Plasma on Production of Extreme Ultraviolet Radiation. IEEE Transations on Plasma Science, 39, 2810-2811.

[3]   Bartirmoro, R., Bombarada, F. and Giannella, R. (1985) Spectroscopic Study of Nonthermal Plasmas. Spectroscopic Study of Nonthermal Plasmas, 32, 531-537.
http://dx.doi.org/10.1103/PhysRevA.32.531

[4]   Liu, J.M., De Groot, J.S., Matte, J.P., Johnston, T.W., and Drake, R.P. (1994) Electron Heat Transport with Non-Maxwellian Distributions. Physics of Plasmas, 1, 3570-3576.
http://dx.doi.org/10.1063/1.870892

[5]   Zhidkov, A.G., Sasaki, A., Tajima, T., Auguste, T., D’Olivera, P., Hulin, S., Monot, P., Faenov, A.Y., Pikuz, T.A. and Skoobelev, I.Y. (1999) Direct Spectroscopic Observation of Multiple-Charged-Ion Acceleration by an Intense Femtosecond-Pulse Laser, Physical Review E, 60,3273-3278.
http://dx.doi.org/10.1103/PhysRevE.60.3273

[6]   Zhidkov, A.G., Sasaki, A., Fukumoto, I., Tajima, T., Auguste, T., D’Olivera, P., Hulin, S., Monot, P., Faenov, A.Y., Pikuz, T.A. and Skobelev, I.Y. (2001) Pulse Duration Effect on the Distribution of Energetic Particles Produced by Intense Femtosecond Laser Pulses Irradiating Solids. Physics of Plasmas, 8, 3718-3723.

[7]   Whitney, K.G. and Pulsifier, P.E. (1993) Plasma Conditions for Non-Maxwellian Electron Distributions in High Current Discharges and Laser-Produced Plasmas. Physical Review E, 47, 1968-1976.
http://dx.doi.org/10.1103/PhysRevE.47.1968

[8]   Choi, P., Deeney, C, and Wong, C.S. (1988) Absolute Timing of a Relativistic Electron Beam in a Plasma Focus. Physics Letters A, 128, 80-83.
http://dx.doi.org/10.1016/0375-9601(88)91048-1

[9]   Kantsyrev, V.L., Fedin, D.A., Shlyaptseva, A.S., Hansen, S., Chamberlain, D. and Ouart, N. (2003) Energetic Electron Beam Generation and Anisotropy of Spectra and Spatial Distribution of Hard X-Ray Emission from 0.9 - 1.0 MA High-Z X-Pinches. Physics of Plasmas, 10, 2519-2526.
http://dx.doi.org/10.1063/1.1572489

[10]   Pereira, N.R. and Whitney, K.G. (1988) Non-Maxwellian Electron-Energy Distribution Due to Inelastic Collisions in a Z-Pinch Plasma. Physical Review A, 38, 319-327.
http://dx.doi.org/10.1103/PhysRevA.38.319

[11]   McTienan, J.M. and Petrosian, V. (1990) The Behavior of Beams of Relativistic Nonthermal Electrons under the Influence of Collisions and Synchrotron Losses. Astrophysical Journal, 359, 541-546.

[12]   Kato, T., Fujiwara, T. and Hanaoka, Y. (1998) X-Ray Spectral Analysis of Yohkoh Bragg Crystal Spectrograph Data on a 1992 September 6 Flare: The Blueshift Component and Ion Abundances. Astrophysical Journal, 492, 822-832.
http://dx.doi.org/10.1086/305047

[13]   Baring, M.G. (1991) The Collisional Acceleration of Relativistic Electrons in the Central Regions of Active Galactic Nuclei. Monthly Notices of the Royal Astronomical Society, 253, 388-400. http://dx.doi.org/10.1093/mnras/253.3.388

[14]   Gorbunov, A.N. and Stacewicz, T. (2000) Photo EMF Observed upon the Laser Resonance Excitation of Sodium Vapors. Technical Physics Letters, 26, 654-655.
http://dx.doi.org/10.1134/1.1307803

[15]   Gorbunov, A.N. and Stacewicz, T. (2001) Observation of an Electromotive Force in a Decaying Photoresonance Plasma of Sodium Vapors. High Temperature, 39, 623-625.
http://dx.doi.org/10.1023/A:1017956827981

[16]   Gorbunov, A.N., Melnikov, S., Smurov, I. and Bray, I. (2001) Ionization Kinetics of Optically Excited Lithium Vapor under Conditions of Negative Electron Mobility. Journal of Physics D: Applied Physics, 34, 1379-1388.
http://dx.doi.org/10.1088/0022-3727/34/9/315

[17]   Stwalley, W.C. and Bahns, J.T. (1993) Atomic, Molecular, and Photonic Processes in Laser-Induced Plasmas in Alkali Metal Vapors. Laser and Particle Beams, 11, 185-204.

[18]   Veza, D. and Sansonetti, C.J. (1992) Ionization of Lithium Vapor by CW Quasiresonant Laser Light. Zeitschrift für Physik D Atoms, Molecules and Clusters, 22, 463-470.
http://dx.doi.org/10.1007/BF01426088

[19]   Koch, M.E. and Collins, C.B. (1979) Space-Charge Ion Detection of Multiphoton Absorption Phenomena in Lithium Vapor. Physical Review A, 19, 1098-1105.
http://dx.doi.org/10.1103/PhysRevA.19.1098

[20]   Skenderovic, H., Labazan, I., Milosevic, S. and Pichler, G. (2000) Laser-Ignited Glow Discharge in Lithium Vapor. Physical Review A, 62, 0527071-7.

[21]   Labazan, I. and Milosevic, S. (2000) Lithium Vapour Excitation at 2S→3D Two-Photon Resonance. European Physical Journal D, 8, 41-47.

[22]   Measures, R.M. and Cardinal, P.G. (1981) Laser Ionization Based on Resonance Saturation. A Simple Model Description. Physical Review A, 23, 804-815.
http://dx.doi.org/10.1103/PhysRevA.23.804

[23]   Stacewicz, T. and Topulos, G. (1988) Ionization of Sodium Vapour by Nanosecond Resonant Laser Pulses. Physica Scripta, 38, 560-563.
http://dx.doi.org/10.1088/0031-8949/38/4/010

[24]   McGeoch, M.W. (1989) Processes in a Lithium Negative Ion Source. SPIE Symposium on Innovative Science and Technology, Los Angeles, January 1989, 1-26.

[25]   Mahmoud, M.A. (2008) Kinetics of Rb+2 and Rb+ Formation in Laser-Excited Rubidium Vapor. Central European Journal of Physics, 6, 530-538.
http://dx.doi.org/10.2478/s11534-008-0074-5

[26]   Mahmoud, M.A., El Tabal, A. and Nady, M. (2012) Collisional Ionization in Lithium Vapor Excited by Nanosecond Laser Pulses. Acta Physica Polinica A, 122, 71-77.

[27]   Bezuglov, N.N., Klyucharev, A.N. and Sheverev, V.A. (1987) Associative Ionization Rate Constants Measured in Cell and Beam Experiments. Journal of Physics B: Atomic and Molecular Physics, 20, 2497-2513.
http://dx.doi.org/10.1088/0022-3700/20/11/018

[28]   Mahmoud, M.A. (2005) Electron Energy Distribution Function in Laser-Excited Rubidium Atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, 1545-1556.
http://dx.doi.org/10.1088/0953-4075/38/10/012

[29]   Oxenius, J. (1986) Kinetic Theory of Particles and Photons. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-70728-5

[30]   Vriens, L. and Smeets, A.H.M. (1980) Cross-Section and Rate Formulas for Electron-Impact Ionization, Excitation, Deexcitation, and Total Depopulation of Excited Atoms. Physical Review A, 22, 940-951.
http://dx.doi.org/10.1103/PhysRevA.22.940

[31]   Drawin, W.H. (1967) Collision and Transport Cross—Sections. Association Euratom CEA, 92 Fontenay-aux Roses, France, 496-506.

[32]   Tisone, G.C. and Hargis Jr., P.J. (1987) Laser Absorption and Fluorescence Studies of the Lithium 2S‐3D Transition. AIP Conference Proceedings, Vol. 160, AIP Press, New York, 404-417.

[33]   Wiese, W.L., Smith, M.W. and Glennon, B.M. (1966) Atomic Transition Probabilities. Vol. I, National Bureau of Standards, Washington, DC, 17.

[34]   Wiese, W.L. and Fuhr, J.R. (2009) Accurate Atomic Transition Probabilities for Hydrogen, Helium, and Lithium. Journal of Physical and Chemical Reference Data, 38, 565.
http://dx.doi.org/10.1063/1.3077727

[35]   McGeoch, M.W., Schiler, R.E. and Chawla, G.K. (1988) Associative Ionization with Cold Rydberg Lithium Atoms. Physical Review Letters, 61, 2088-2091.
http://dx.doi.org/10.1103/PhysRevLett.61.2088

[36]   Jabbour, Z.J., Namiotka, R.K., Huennekens, J., Allegrini, M., Milosevic, S. and De Tomasi, F. (1996) Energy Pooling Collisions in Cesium: 6PJ+ 6PJ→6S+ (nl= 7P, 6D, 8S, 4F). Physical Review A, 54, 1372-1384.

[37]   De Filippo, G., Guldberg-Kjaer, S., Milosevic, S., Pedersen, J.O.P. and Allegrini, M. (1998) Reverse Energy-Pooling in K-Na Mixture. Physical Review A, 57, 255-266.

[38]   Aymar, M., Luc-Koenig, E. and Combet Farnoux, F. (1976) Theoretical Investigation on Photoionization from Rydberg States of Lithium, Sodium and Potassium. Journal of Physics B: Atomic and Molecular Physics, 9, 1279-1291.
http://dx.doi.org/10.1088/0022-3700/9/8/013

[39]   He, C. and Bernheim, R.A. (1992) Energy Transfer and Energy Pooling from 2 2P 3/2,1/2, Excited Li Atoms in Li Vapor. Chemical Physics Letters, 190, 494-506.

[40]   Klucharev, A.N. and Vujnovic, A. (1990) Chemi-Ionization in Thermal-Energy Binary Collisions of Optically Excited Atoms. Physics Reports, 185, 57-81.
http://dx.doi.org/10.1016/0370-1573(90)90112-F

 
 
Top