The Periodic Table of Elementary Particles Based on String Theory

ABSTRACT

In this
paper, all elementary particles (leptons, quarks, gauge bosons, and the Higgs
boson) can be placed in the periodic table of elementary particles based on
string theory with oscillating spacetime dimension number, instead of
conventional string theory with fixed space-time dimension number. Dimension
number oscillates between 11D and 10D and between 10D and 4D reversibly. The
oscillation of space-time dimension number (D) is accompanied by mass dimension
number (d) to represent mass. Space-time dimension number decreases with
increasing mass dimension number, decreasing speed of light and increasing rest
mass. 4D particle originally is 4D10d particle, and has the lowest speed of
light and the highest rest mass. With the same energy, the relation between
adjacent mass dimensions is *M*_{d-1}=*M*_{d}*α*_{d}^{2}, where *M* is rest mass, d is mass dimension
number, and *α* is the fine structure
constant. According to the proposed cosmology, the non-gravitational 4D10d
particles were sliced into 4D4d core particles surrounded by 6 separated mass
dimensions as the 6 dimensional orbitals constituting the non-gravitational
forces (electromagnetism, strong, and weak). The combination of the 6
dimensional orbitals and the gravitational 4D10d particle resulted in the 7
dimensional orbitals. As the periodic table of elements based on the atomic
orbitals, the periodic table of elementary particles is based on the
combination of the two asymmetrical sets of the 7 dimensional orbitals. One set
as the principal dimensional orbitals is mainly for leptons and gauge bosons,
and another set as the auxiliary orbitals is mainly for individual quarks. The
calculated constituent masses of leptons, quarks, gauge bosons, and the Higgs
boson are in good agreement with the observed values. For examples, the
calculated mass of top quark is 176.5 GeV in good agreement with the observed
173.34 GeV, and the calculated average mass of the Higgs boson is 128.8 GeV in
good agreements with the observed 125 or 126 GeV.

KEYWORDS

The Periodic Table of Elementary Particles, String Theory, Higgs Boson, Lepton, Quark, Gauge Boson

The Periodic Table of Elementary Particles, String Theory, Higgs Boson, Lepton, Quark, Gauge Boson

Cite this paper

Chung, D. (2014) The Periodic Table of Elementary Particles Based on String Theory.*Journal of Modern Physics*, **5**, 1234-1243. doi: 10.4236/jmp.2014.514123.

Chung, D. (2014) The Periodic Table of Elementary Particles Based on String Theory.

References

[1] Randall, L. and Sundrum, R. (1999) Physical Review Letters, 83, 4690-4693.

http://dx.doi.org/10.1103/PhysRevLett.83.4690

[2] Chung, D.-Y. (2014) Journal of Modern Physics, 5, 464-472.

http://dx.doi.org/10.4236/jmp.2014.56056

[3] Albrecht, A. and Magueijo, J. (1999) Physics Review, D59, Article ID: 043516.

http://dx.doi.org/10.1103/PhysRevD.59.043516

[4] Barrow, J.D. (2003) Physics Letter B, 564, 1-7.

http://dx.doi.org/10.1016/S0370-2693(03)00573-2

[5] Wesson, P.S. (1999) Space-Time-Matter: Modern Kaluza-Klein Theory. World Scientific Publishing Company, Singapore.

http://dx.doi.org/10.1142/9789812385475

[6] Barut, A.O. (1979) Physical Review Letter, 42, 1251.

http://dx.doi.org/10.1103/PhysRevLett.42.1251

[7] Greulich, K.O. (2010) Journal of Modern Physics, 1, 300-302.

http://dx.doi.org/10.4236/jmp.2010.15042

[8] Greulich, K.O. (2013) Proceedings of SPIE, 8832, Article ID: 883218.

http://dx.doi.org/10.1117/12.2023044

[9] Chung, D.-Y. and Krasnoholovets, V. (2013) Journal of Modern Physics, 4, 27-31.

http://dx.doi.org/10.4236/jmp.2013.44A005

[10] Chung, D.-Y. and Hefferlin, R. (2013) Journal of Modern Physics, 4, 21-26.

http://dx.doi.org/10.4236/jmp.2013.44A004

[11] Maldacena, J. (1998) Advances in Theoretical and Mathematical Physics, 2, 231-252.

[12] Chung, D. (1997) Speculations in Science and Technology, 20, 259-268.

http://dx.doi.org/10.1023/A:1026433207862

[13] Salam, A. (1968) Svartholm, W., Ed., Elementary Particle Theory, Almquist and Wiksell, Stockholm, 367-387.

[14] Beringer, J., et al. (2012) Physical Review, D86, Article ID: 0100018

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-standard-model.pdf

[15] Fujita, J. and Miyazawa, H. (1957) Progress of Theoretical Physics, 17, 360.

http://dx.doi.org/10.1143/PTP.17.360

[16] Aguilar, A., Binosi, D. and Papavassiliou, J. (2008) Physical Review, D 78, Article ID: 025010.

http://dx.doi.org/10.1103/PhysRevD.78.025010

[17] Langacher, P., Luo, M. and Mann, A. (1992) Reviews of Modern Physics, 64, 87-192.

http://dx.doi.org/10.1103/RevModPhys.64.87

[18] Griffiths, D. (2008) Introduction to Elementary Particles. WILEY-VCH, 135.

[19] MacGregor, M.H. (2005) International Journal of Modern Physics A, 20, 719-798.

http://dx.doi.org/10.1142/S0217751X05021117

[20] The ATLAS, CDF, CMS, D0 Collaborations (2014) First Combination of Tevatron and LHC Measurements of the Top-Quark Mass. arXiv:1403.4427 [hep-ex]

[21] The ATLAS Collaboration (2012) Physical Letters B, 716, 1-29.

http://dx.doi.org/10.1016/j.physletb.2012.08.020

[22] The CMS Collaboration (2012) Physical Letters B, 716, 30-61.

http://dx.doi.org/10.1016/j.physletb.2012.08.021

[1] Randall, L. and Sundrum, R. (1999) Physical Review Letters, 83, 4690-4693.

http://dx.doi.org/10.1103/PhysRevLett.83.4690

[2] Chung, D.-Y. (2014) Journal of Modern Physics, 5, 464-472.

http://dx.doi.org/10.4236/jmp.2014.56056

[3] Albrecht, A. and Magueijo, J. (1999) Physics Review, D59, Article ID: 043516.

http://dx.doi.org/10.1103/PhysRevD.59.043516

[4] Barrow, J.D. (2003) Physics Letter B, 564, 1-7.

http://dx.doi.org/10.1016/S0370-2693(03)00573-2

[5] Wesson, P.S. (1999) Space-Time-Matter: Modern Kaluza-Klein Theory. World Scientific Publishing Company, Singapore.

http://dx.doi.org/10.1142/9789812385475

[6] Barut, A.O. (1979) Physical Review Letter, 42, 1251.

http://dx.doi.org/10.1103/PhysRevLett.42.1251

[7] Greulich, K.O. (2010) Journal of Modern Physics, 1, 300-302.

http://dx.doi.org/10.4236/jmp.2010.15042

[8] Greulich, K.O. (2013) Proceedings of SPIE, 8832, Article ID: 883218.

http://dx.doi.org/10.1117/12.2023044

[9] Chung, D.-Y. and Krasnoholovets, V. (2013) Journal of Modern Physics, 4, 27-31.

http://dx.doi.org/10.4236/jmp.2013.44A005

[10] Chung, D.-Y. and Hefferlin, R. (2013) Journal of Modern Physics, 4, 21-26.

http://dx.doi.org/10.4236/jmp.2013.44A004

[11] Maldacena, J. (1998) Advances in Theoretical and Mathematical Physics, 2, 231-252.

[12] Chung, D. (1997) Speculations in Science and Technology, 20, 259-268.

http://dx.doi.org/10.1023/A:1026433207862

[13] Salam, A. (1968) Svartholm, W., Ed., Elementary Particle Theory, Almquist and Wiksell, Stockholm, 367-387.

[14] Beringer, J., et al. (2012) Physical Review, D86, Article ID: 0100018

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-standard-model.pdf

[15] Fujita, J. and Miyazawa, H. (1957) Progress of Theoretical Physics, 17, 360.

http://dx.doi.org/10.1143/PTP.17.360

[16] Aguilar, A., Binosi, D. and Papavassiliou, J. (2008) Physical Review, D 78, Article ID: 025010.

http://dx.doi.org/10.1103/PhysRevD.78.025010

[17] Langacher, P., Luo, M. and Mann, A. (1992) Reviews of Modern Physics, 64, 87-192.

http://dx.doi.org/10.1103/RevModPhys.64.87

[18] Griffiths, D. (2008) Introduction to Elementary Particles. WILEY-VCH, 135.

[19] MacGregor, M.H. (2005) International Journal of Modern Physics A, 20, 719-798.

http://dx.doi.org/10.1142/S0217751X05021117

[20] The ATLAS, CDF, CMS, D0 Collaborations (2014) First Combination of Tevatron and LHC Measurements of the Top-Quark Mass. arXiv:1403.4427 [hep-ex]

[21] The ATLAS Collaboration (2012) Physical Letters B, 716, 1-29.

http://dx.doi.org/10.1016/j.physletb.2012.08.020

[22] The CMS Collaboration (2012) Physical Letters B, 716, 30-61.

http://dx.doi.org/10.1016/j.physletb.2012.08.021