[1] Jame, A. (1999) Time and the Persistence of Alluvium: River Engineering, Fluvial Geomorphology, and Mining Sediment in California. Geomorphology, 31, 265-290.
http://dx.doi.org/10.1016/S0169-555X(99)00084-7
[2] Horton, R. (1945) Erosional Development of Streams and Their Drainage Basins: Hydrophysical Approach to Quantitative Morphology. Geological Society of America Bulletin, 56, 275-370.
http://dx.doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
[3] El Shamy, I. (1992) Recent Recharge and Flash Flooding Opportunities in the Eastern Desert, Egypt. Annuals of Geological Survey of Egypt, 18, 323-334.
[4] Xiao, L. (1999) Flash Floods in Arid and Semi-Arid Zones. International Hydrological Program, Technical Documents in Hydrology, No. 23, UNESCO, Paris.
[5] Schanze, J. (2006) Food Risk Management—A Basic Framework. In: Schanze, J., et al., Eds., Flood Risk Management: Hazards, Vulnerability and Mitigation Measures, Springer, 1-20.
[6] Momani, N. and Fadil, S. (2010) Changing Public Policy Due to Saudi City of Jeddah Flood Disaster. Journal of Social Sciences, 6, 424-428.
[7] Ewea, A. (2010) Hydrological Analysis of Flooding Wastewater Lake in Jeddah, Saudi Arabia. JKAU: Met. Env. & Arid Land Agric. Sci., 21, 125-144.
[8] Arnous, O., Aboulela, A. and Green, R. (2011) Geo-Environmental Hazards Assessment of the North Western Gulf of Suez, Egypt. Journal of Coastal Conservation, 15, 37-50.
http://dx.doi.org/10.1007/s11852-010-0118-z
[9] Hall, W., Meadowcroft, C., Sayers, B. and Bramley, E. (2003) Integrated Flood Risk Management in England and Wales. Natural Hazard Review, ASCE, 4, 126-135.
http://dx.doi.org/10.1061/(ASCE)1527-6988(2003)4:3(126)
[10] Hooijer, A., Klijn, F., Pedroli, B. and Van Os, A. (2004) Towards Sustainable Flood Risk Management in the Rhine and Meuse River Basins: Synopsis of the Findings of IRMA-SPONGE. River Research and Applications, 20, 343-357.
http://dx.doi.org/10.1002/rra.781
[11] Singh, R., Kumar, R. and Tare, V. (2009) Variability of Soil Wetness and Its Relation with Floods over the Indian Subcontinent. Canadian Journal of Remote Sensing, 35, 85-97.
http://dx.doi.org/10.5589/m08-079
[12] Abdel-Lattif, A. and Sherief, Y. (2012) Morphometric Analysis and Flash Floods of WadiSudr and Wadi Wardan, Gulf of Suez, Egypt: Using Digital Elevation Model. Arabian Journal of Geosciences, 5, 181-195.
http://dx.doi.org/10.1007/s12517-010-0156-8
[13] (2003) Tourism Development Authority Report TDAR, Red Sea Sustainable Tourism Initiative. Land Use Management Plan, South Marsa Alam, Red Sea Coast, Egypt, 47 p.
[14] Ismail, I., Othman, A., Abd El-Latif, R. and Ahmed, A. (2010) Impact of Flash Flood on Development Potentials of Wadi Abu Ghusun, Eastern Desert, Egypt. Kuwait Journal of Science and Engineering, 37, 111-134.
[15] Tahoon, M. (2011) Hydrogeological and Environmental Study in the Area between Marsa Alam and Baranes Red Sea, Egypt. Ph.D. Thesis, Faculty of Science, South Valley University, Qena.
[16] Abdel Aziz, A. (1999) Structural Analysis of the Basement Complex in Wadi El Gemal Area, South Eastern Desert, Egypt. Ph.D. Thesis, South Valley University, Qena, 335.
[17] Abdalla, F. (2102) Mapping of Groundwater Prospective Zones Using Remote Sensing and GIS Techniques: A Case Study from the Central Eastern Desert, Egypt. Journal of African Earth Sciences, 70, 8-17.
[18] Makram, F. (1993) Hydrogeological and Hydrogeochemical Studies on Some Localities in South Eastern Desert, Egypt. Ph.D. Thesis, Faculty of Science, Suez Canal University, Egypt, 260 p.
[19] El Shamy, I. (1992) Towards the Water Management in Sinai. Proceedings of the 3rd Conference on Geology of Sinai Development, Ismailia, 63-70.
[20] Miller, N. (1953) A Quantitative Geomorphic Study of Drainage Basins Characteristics in Clinish Mountain Area, Verginia and Tenssesse. Columbia University, Technical Report No. 3, 30 p.