MSCE  Vol.2 No.8 , August 2014
P-Doped Titania Xerogels as Efficient UV-Visible Photocatalysts

In the present study, sol-gel process is used to synthesize P-doped TiO2 xerogels by the cogelation method of a functionalized P alkoxide, (NH2-(CH2)2-NH-(CH2)2-P(O)-(OC2H5)2) with Ti(OC3H7)4 in either 2-methoxyethanol or isopropanol. The phosphorus-doping improved the thermal stability of titania and decreased the phase transformation of anatase into rutile. This modification by phosphorus shifted the absorption edge of titania to the visible region as proved by Diffuse reflectance measurements, and thus offers the possibility to produce visible light effective TiO2 photocatalyst. The excellent photocatalytic activity of P-doped TiO2 xerogels compared to pure TiO2 could be explained by its high surface area and small TiO2-anatase crystallite size. From these results, it was proved by using three different models that phosphorus intrinsically influences the photocatalytic activity.

Cite this paper: Bodson, C. , Pirard, S. , Pirard, R. , Tasseroul, L. , Bied, C. , Wong Chi Man, M. , Heinrichs, B. and D. Lambert, S. (2014) P-Doped Titania Xerogels as Efficient UV-Visible Photocatalysts. Journal of Materials Science and Chemical Engineering, 2, 17-32. doi: 10.4236/msce.2014.28004.

[1]   Fujishima, A., Rao, T.N. and Tryk, D.A. (2000) Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21.

[2]   Gaya, U.I. and Abdullah, A.H. (2008) Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1-12.

[3]   Mills, A. and Le Hunte, S. (1997) An Overview of Semiconductor Photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1-35.

[4]   Lv, Y., Yu, L., Huang, H., Liu, H. and Feng, Y. (2009) Preparation, Characterization of P-Doped TiO2 Nanoparticles and Their Excellent Photocatalystic Properties under the Solar Light Irradiation. Journal of Alloys and Compounds, 488, 314-319.

[5]   Lin, L., Zheng, R.Y., Xie, J.L., Zhu, Y.X. and Xie, Y.C. (2007) Synthesis and Characterization of Phosphor and Nitrogen Co-Doped Titania. Applied Catalysis B: Environmental, 76, 196-202.

[6]   Xu, L., Tang, C.Q., Qian, J., Huang, Z. B. (2010) Theoretical and Experimental Study on the Electronic Structure and Optical Absorption Properties of P-Doped TiO2. Applied Surface Science, 256, 2668-2671.

[7]   Yu, J., Yu, J.C., Ho, W., Leung, M.P.K., Cheng, B., Zhang, G. and Zhao, X. (2003) Effects of Alcohol Content and Calcination Temperature on the Textural Properties of Bimodally Mesoporous Titania. Applied Catalysis A: General, 255, 309-320.

[8]   Stafford, U., Gray, K.A., Kamat, P.V. and Varma, A. (1993) An in Situ Diffuse Reflectance FTIR Investigation of Photocatalytic Degradation of 4-Chlorophenol on a TiO2 Powder Surface. Chemical Physics Letters, 205, 55-61.

[9]   Yoo, K.S., Lee, T.G. and Kim, J. (2005) Preparation and Characterization of Mesoporous TiO2 Particles by Modified Sol-Gel Method Using Ionic Liquids. Microporous and Mesoporous Materials, 84, 211-217.

[10]   Simonsen, M. and Søgaard, E. (2010) Sol-Gel Reactions of Titanium Alkoxides and Water: Influence of pH and Alkoxy Group on Cluster Formation and Properties of the Resulting Products. Journal of Sol-Gel Science and Technology, 53, 485-497.

[11]   Terabe, K., Kato, K., Miyazaki, H., Yamaguchi, S., Imai, A. and Iguchi, Y. (1994) Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide. Journal of Materials Science, 29, 1617-1622.

[12]   Li, Z., Hou, B., Xu, Y., Wu, D., Sun, Y., Hu, W. and Deng, F. (2005) Comparative Study of Sol-Gel-Hydrothermal and Sol-Gel Synthesis of Titania-Silica Composite Nanoparticles. Journal of Solid State Chemistry, 178, 1395-1405.

[13]   Wang, C.Y., Bahnemann, D.W. and Dohrmann, J.K. (2000) A Novel Preparation of Iron-Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity. Chemical Communications, 16, 1539-1540.

[14]   Sibu, C.P., Kumar, S.R., Mukundan, P. and Warrier, K.G.K. (2002) Structural Modifications and Associated Properties of Lanthanum Oxide Doped Sol-Gel Nanosized Titanium Oxide. Chemistry of Materials, 14, 2876-2881.

[15]   Braconnier, B., Páez, C.A., Lambert, S., Alié, C., Henrist, C., Poelman, D., Pirard, J.P., Cloots, R. and Heinrichs, B. (2009) Ag- and SiO2-Doped Porous TiO2 with Enhanced Thermal Stability. Microporous and Mesoporous Materials, 122, 247-254.

[16]   Bodson, C.J., Lambert, S.D., Alié, C., Cattoën, X., Pirard, J.P., Bied, C., Manb, M.W.C. and Heinrichs, B. (2010) Effects of Additives and Solvents on the Gel Formation Rate and on the Texture of P- and Si-Doped TiO2 Materials. Microporous and Mesoporous Materials, 134, 157-164.

[17]   Brinker, C.J. and Scherer, G.W. (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego.

[18]   Bergeret, G. and Gallezot, P. (1997) Particle Size and Dispersion Measurements. In: Ertl, G., Knözinger, H., Schuth, F. and Weitkamp, J., Eds., Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 439-464.

[19]   Kubelka, P. and Munk, F. (1931) Ein Beitrag Zur Optik Der Farbanstriche. Zeitschrift für Technische Physik, 12, 593-601.

[20]   Tauc, J., Grigorovici, R. and Vancu, A. (1966) Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi (b), 15, 627-637.

[21]   Himmelblau, D.M. (1970) Process Analysis by Statistical Methods. Wiley, New York.

[22]   Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1990) Numerical Recipes in C—The Art of Scientific Computing. Cambridge University Press, Cambridge.

[23]   Pirard, S., Pirard, J.P., Heyen, G., Schoebrechts, J.P. and Heinrichs, B. (2011) Experimental Procedure and Statistical Data Treatment for the Kinetic Study of Selective Hydrodechlorination of 1,2-Dichloroethane into Ethylene over a Pd-Ag Sol-Gel Catalyst. Chemical Engineering Journal, 173, 801-812.

[24]   Stojanovic, B., Marinkovic, Z., Brankovic, G. and Fidancevska, E. (2000) Evaluation of Kinetic Data for Crystallization of TiO2 Prepared by Hydrolysis Method. Journal of Thermal Analysis and Calorimetry, 60, 595-604.

[25]   Lachheb, H., Houas, A. and Herrmann, J.M. (2008) Photocatalytic Degradation of Polynitrophenols on Various Commercial Suspended or Deposited Titania Catalysts Using Artificial and Solar Light. International Journal of Photoenergy, 2008, Article ID: 497895, 9 Pages.

[26]   Lecloux, A.J. (1981) Texture of Catalysts. In: Anderson, J.R. and Boudart, M., Eds., Catalysis: Science and Technology, Vol. 2, Springer, Berlin, 171-230.

[27]   Li, F.F., Jiang, Y.S., Xia, M.S., Sun, M.M., Xue, B., Liu, D.R. and Zhang, X.G. (2009) Effect of the P/Ti Ratio on the Visible-Light Photocatalytic Activity of P-Doped TiO2. The Journal of Physical Chemistry C, 113, 18134-18141.

[28]   Körösi, L., Papp, S., Bertóti, I. and Dékány, I. (2007) Surface and Bulk Composition, Structure, and Photocatalytic Activity of Phosphate-Modified TiO2. Chemistry of Materials, 19, 4811-4819.

[29]   Yu, H.F. (2007) Photocatalytic Abilities of Gel-Derived P-Doped TiO2. Journal of Physics and Chemistry of Solids, 68, 600-607.

[30]   Myller, A.T., Karhe, J.J. and Pakkanen, T.T. (2010) Preparation of Aminofunctionalized TiO2 Surfaces by Binding of Organophosphates. Applied Surface Science, 257, 1616-1622.

[31]   Zheng, R.Y., Lin, L., Xie, J.L., Zhu, Y.X. and Xie, Y.C. (2008) State of Doped Phosphorus and Its Influence on the Physicochemical and Photocatalytic Properties of P-Doped Titania. The Journal of Physical Chemistry C, 112, 15502-15509.