OJPChem  Vol.4 No.3 , August 2014
Synthesis of Soluble Polythiophene Partially Containing 3,4-Ethylenedioxythiophene and 3-Hexylthiophene by Polycondensation
Abstract: A novel poly(quinquethiophene) partially containing 3,4-ethylenedioxythiophene (EDOT) and 3-hexylthiophene, poly(3,3 ''''-dihexyl-3',4',3''',4'''-diethylenedioxy-2,2':5',2'':5'',2''':5''',2''''-quinquethiophene), was synthesized by three types of polycondensations. Among them, direct C-H coupling reaction gave the polymer with the highest molecular weight. The resulting polymer was soluble in common organic solvents. Absorption and fluorescence spectra of the polymer showed a remarkable red-shift compared with the corresponding monomer due to the expansion of effective π-conjugation length.
Cite this paper: Imae, I. , Sagawa, H. , Mashima, T. , Komaguchi, K. , Ooyama, Y. and Harima, Y. (2014) Synthesis of Soluble Polythiophene Partially Containing 3,4-Ethylenedioxythiophene and 3-Hexylthiophene by Polycondensation. Open Journal of Polymer Chemistry, 4, 83-93. doi: 10.4236/ojpchem.2014.43010.

[1]   Skotheim, T.A. and Reynolds, J.R. (Eds.) (2007) Handbook of Conducting Polymers. 3rd Edition, CRC Press, Boca Raton.

[2]   Leclerc, M. and Morin, J.F. (Eds.) (2010) Design and Synthesis of Conjugated Polymers. Wiley-VCH, Weinheim.

[3]   Chujo, Y. (Ed.) (2010) Conjugated Polymer Synthesis: Methods and Reactions. Wiley-VCH, Weinheim.

[4]   Inzelt, G. (Ed.) (2012) Conducting Polymers: A New Era in Electrochemistry. Springer, Heidelberg.

[5]   Kirchmeyer, S. and Reuter, K. (2005) Scientific Importance, Properties and Growing Applications of Poly(3,4-ethylenedioxythiophene). Journal of Materials Chemistry, 15, 2077-2088.

[6]   Elschner, A., Kirchmeyer, S., Lovenich, W., Merker, U. and Reuter (2010) PEDOT: Principles and Applications of an Intrinsically Conductive Polymer. CRC Press, Boca Raton.

[7]   Yan, H. and Okuzaki, H. (2010) Poly(3,4-ethylenedioxythiophen)/Poly(4-styrenesulfonate): Thin Films and Microfibers. Macromolecular Symposia, 296, 286-293.

[8]   Elschner, A. and L?venich, W. (2011) Solution-Deposited PEDOT for Transparent Conductive Applications. MRS Bulletin, 36, 794-798;

[9]   Yue, R. and Xu, J. (2012) Poly(3,4-ethylenedioxythiophene) as Promising Organic Thermoelectric Materials: A MiniReview. Synthetic Metals, 162, 912-917.

[10]   Matsushita, S., Jeong, Y.S. and Akagi, K. (2013) Electrochromism-Driven Linearly and Circularly Polarized Dichroism of Poly(3,4-ethylenedioxythiophene) Derivatives with Chirality and Liquid Crystallinity. Chemical Communications, 49, 1883-1890.

[11]   Patra, A., Bendikov, M. and Chand, S. (2014) Poly(3,4-ethylenedioxyselenophene) and Its Derivatives: Novel Organic Electronic Materials. Accounts of Chemical Research, 47, 1465-1474.

[12]   Raimundo, J.M., Blanchard, P., Frère, P., Mercier, N., Ledoux-Rak, I., Hierleb, R. and Roncali, J. (2001) Push-Pull Chromophores Based on 2,2'-Bi(3,4-ethylenedioxythiophene) (BEDOT) π-Conjugating Spacer. Tetrahedron Letters, 42, 1507-1510.

[13]   Raimundo, J.M., Blanchard, P., Gallego-Planas, N., Mercier, N., Ledoux-Rak, I., Hierle, R. and Roncali, J. (2002) Design and Synthesis of Push-Pull Chromophores for Second-Order Nonlinear Optics Derived from Rigidified Thiophene-Based π-Conjugating Spacers. The Journal of Organic Chemistry, 67, 205-218.

[14]   Turbiez, M., Frère, P., Allain, M., Videlot, C., Ackermann, J. and Roncali, J. (2005) Design of Organic Semiconductors: Tuning the Electronic Properties of π-Conjugated Oligothiophenes with the 3,4-Ethylenedioxythiophene (EDOT) Building Block. Chemistry: A European Journal, 11, 3742-3752.

[15]   Spencer, H.J., Skabara, P.J., Giles, M., McCulloch, I., Coles, S.J. and Hursthouse, M.B. (2005) The First Direct Experimental Comparison between the Hugely Contrasting Properties of PEDOT and the All-Sulfur Analogue PEDTT by Analogy with Well-Defined EDTT-EDOT Copolymers. Journal of Materials Chemistry, 15, 4783-4792.

[16]   ?zen, A.S., Atilgan, C. and Sonmez, G. (2007) Noncovalent Intramolecular Interactions in the Monomers and Oligomers of the Acceptor and Donor Type of Low Band Gap Conducting Polymers. The Journal of Physical Chemistry C, 111, 16362-16371.

[17]   Hergué, N., Leriche, P., Blanchard, P., Allain, M., Gallego-Planas, N., Frère, P. and Roncali, J. (2008) Evidence for the Contribution of Sulfur-Bromine Intramolecular Interactions to the Self-Rigidification of Thiophene-Based π-Conjugated Systems. New Journal of Chemistry, 32, 932-936.

[18]   Sotzing, G.A., Reynolds, J.R. and Steel, P.J. (1996) Electrochromic Conducting Polymers via Electrochemical Polymerization of Bis(2-(3,4-ethylenedioxy)thienyl) Monomers. Chemistry of Materials, 8, 882-889.

[19]   Sotzing, G.A., Reddinger, J.L., Reynolds, J.R. and Steel, P.J. (1997) Redox Active Electrochromic Polymers from Low Oxidation Monomers Containing 3,4-Ethylenedioxythiophene (EDOT). Synthetic Metals, 84, 199-201.

[20]   Johansson, T., Mammo, W., Svensson, M., Andersson, M.R. and Ingan?s, O. (2003) Electrochemical Bandgaps of Substituted Polythiophenes. Journal of Materials Chemistry, 13, 1316-1323.

[21]   Pepitone, M.F., Eaiprasertsak, K., Hardaker, S.S. and Gregory, R.V. (2003) Synthesis of 2,5-Bis[(3,4-ethylenedioxy)thien-2-yl]-3-Substituted Thiophenes. Organic Letters, 5, 3229-3232.

[22]   Andersson, P., Forchheimer, R., Tehrani, P. and Berggren, M. (2007) Printable All-Organic Electrochromic ActiveMatrix Displays. Advanced Functional Materials, 17, 3074-3082.

[23]   At?lgan, N., Cihaner, A. and ?nal, A.M. (2010) Electrochromic Performance and Ion Sensitivity of a Terthienyl Based Fluorescent Polymer. Reactive and Functional Polymers, 70, 244-250.

[24]   Invernale, M.A., Ding, Y. and Sotzing G.A. (2010) All-Organic Electrochromic Spandex. ACS Applied Materials & Interfaces, 2, 296-300.

[25]   Imae, I., Imabayashi, S., Korai, K., Mashima, T., Ooyama, Y., Komaguchi, K. and Harima, Y. (2012) Electrosynthesis and Charge-Transport Properties of Poly(3',4'-ethylenedioxy-2,2':5',2'-terthiophene). Materials Chemistry and Physics, 131, 752-756.

[26]   Inzelt, G. (2012) Chemical and Electrochemical Syntheses of Conducting Polymers. In: Inzelt, G., Ed., Conducting Polymers: A New Era in Electrochemistry, Springer, Heidelberg, 149-172.

[27]   Bhattacharyya, D., Howden, R.M., Borrelli, D.C. and Gleason, K.K. (2012) Vapor Phase Oxidative Synthesis of Conjugated Polymers and Applications. Journal of Polymer Science Part B: Polymer Physics, 50, 1329-1351.

[28]   Darmanin T. and Guittard, F. (2014) Wettability of Conducting Polymers: From Superhydrophilicity to Superoleophobicity. Progress in Polymer Science, 39, 656-682.

[29]   Yamamoto, T. (2010) Organometallic Polycondensation for Conjugated Polymers. In: Chujo, Y., Ed., Conjugated Polymer Synthesis: Methods and Reactions, Wiley-VCH, Weinheim, 1-34.

[30]   Tamao, K., Kodama, S., Nakajima, I. and Kumada, M. (1982) Nickel-Phosphine Complex-Catalyzed Grignard Coupling-II. Tetrahedron, 38, 3347-3354.

[31]   Hoffmann, K.J. and Carlsen P.H.J. (1999) Study of an Efficient and Selective Bromination Reaction of Substituted Thiophenes. Synthetic Communications, 29, 1607-1610.

[32]   Meng, H., Perepichka, D.F. and Wudl, F. (2003) Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene). Angewandte Chemie International Edition, 42, 658-661.

[33]   Liégault, B., Lapointe, D., Caron, L., Vlassova, A. and Fagnou K. (2009) Establishment of Broadly Applicable Reaction Conditions for the Palladium-Catalyzed Direct Arylation of Heteroatom-Containing Aromatic Compounds. The Journal of Organic Chemistry, 74, 1826-1834.

[34]   Lapointe, D., Markiewicz, T., Whipp, C.J., Toderian, A. and Fagnou, K. (2011) Predictable and Site-Selective Functionalization of Poly(hetero)arene Compounds by Palladium Catalysis. The Journal of Organic Chemistry, 76, 749-759.

[35]   Lu, W., Kuwabara, J. and Kanbara, T. (2011) Polycondensation of Dibromofluorene Analogues with Tetrafluorobenzene via Direct Arylation. Macromolecules, 44, 1252-1255.

[36]   Fujinami, Y., Kuwabara, J., Lu, W., Hayashi, H. and Kanbara, T. (2012) Synthesis of Thiophene-and BithiopheneBased Alternating Copolymers via Pd-Catalyzed Direct C-H Arylation. ACS Macro Letters, 1, 67-70.

[37]   Wang, Q., Takita, R., Kikuzaki, Y. and Ozawa, F. (2010) Palladium-Catalyzed Dehydrohalogenative Polycondensation of 2-Bromo-3-hexylthiophene: An Ef?cient Approach to Head-to-Tail Poly(3-hexylthiophene). Journal of the American Chemical Society, 132, 11420-11421.

[38]   Wang, Q., Wakioka, M. and Ozawa, F. (2012) Synthesis of End-Capped Regioregular Poly(3-hexylthiophene)s via Direct Arylation. Macromolecular Rapid Communications, 33, 1203-1207.

[39]   Berrouard, P., Najari, A., Pron, A., Gendron, D., Morin, P.O., Pouliot, J.R., Veilleux, J. and Leclerc, M. (2012) Synthesis of 5-Alkyl[3,4-c]thienopyrrole-4,6-dione-Based Polymers by Direct Heteroarylation. Angewandte Chemie International Edition, 51, 2068-2071.

[40]   Wakioka, M., Kitano, Y. and Ozawa, F. (2013) A Highly Efficient Catalytic System for Polycondensation of 2,7-Dibromo-9,9-dioctylfluorene and 1,2,4,5-Tetrafluorobenzene via Direct Arylation. Macromolecules, 46, 370-374.

[41]   Wakioka, M., Ichihara, N., Kitano, Y. and Ozawa, F. (2014) A Highly Efficient Catalyst for the Synthesis of Alternating Copolymers with Thieno[3,4-c]pyrrole-4,6-dione Units via Direct Arylation Polymerization. Macromolecules, 47, 626-631.