[1] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B, 39, 1-38.
[2] Ghahramani, Z. and Jordan, M.I. (1994) Supervised Learning from Incomplete Data via an EM Approach. Advances in Neural Information Processing Systems (NIPS 6), Morgan Kauffman, San Fransisco, 120-127.
[3] Wasito, I. and Mirkin, B. (2005) Nearest Neighbour Approach in the Least-Squares Data Imputation Algorithms. Information Sciences, 169, 1-25.
[4] Chiewchanwattana, S., Lursinsap, C. and Chu, C.-H.H. (2007) Imputing Incomplete Time-Series Data Based on Varied-Window Similarity Measure of Data Sequences. Pattern Recognition Letters, 28, 1091-1103. http://dx.doi.org/10.1016/j.patrec.2007.01.008
[5] Prasomphan, S., Lursinsap, C. and Chiewchanwattana, S. (2009) Imputing Time Series Data by Regional-Gradient-Guided Bootstrapping Algorithm. Proceedings of the 9th International Symposium on Communications and Information Technology, Incheon, 163-168.
[6] Grayzeck, E. (2011) National Space Science Data Center, Archive Plan for 2010-2013. NSSDC Archive Plan 10-13.
[7] Robinson, A.R. and Lermusiaux, P.F.J. (2000) Overview of Data Assimilation. Harvard Reports in Physical/Interdisciplinary, Ocean Science, No. 62.
[8] Viterbi, A.J. (1967) Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding
Algorithm. IEEE Transactions on Information Theory, 13, 260-269. http://dx.doi.org/10.1109/TIT.196
7.1054010
[9] Charantonis, A.A., Brajard, J., Moulin, C., Bardan, F. and Thiria, S. (2011) Inverse Method for the Retrieval of Ocean Vertical Profiles Using Self Organizing Maps and Hidden Markov Models—Application on Ocean Colour Satellite Image Inversion. IJCCI (NCTA), 316-321.
[10] Jaziri, R., Lebbah, M., Bennani, Y. and Chenot, J-H. (2011) SOS-HMM: Self-Organizing Structure of Hidden Markov Model, Artificial Neural Networks and Machine Learning—ICANN 2011. Lecture Notes in Computer Science, 6792, 87-94. http://dx.doi.org/10.1007/978-3-642-21738-8_12
[11] Madec, G. (2008) NEMO Ocean Engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France.
[12] Willsky, A.S. (2002) Multiresolution Markov Models for Signal and Image Processing. Proceedings of the IEEE, 90, 1396-1458. http://dx.doi.org/10.1109/JPROC.2002.800717
[13] Jolliffe, I.T. (2002) Principal Component Analysis. 2nd Edition, Springer, Berlin.
[14] Kwan, C., Zhang, X., Xu, R. and Haynes, L. (2003) A Novel Approach to Fault Diagnostics and Prognostics. Proceedings of the 2003 IEEE International Conference Robotics & Automation, Taipei.
[15] Kohonen, T. (1990) The Self-Organizing Map. Proceedings of the IEEE, 78.
http://www.cis.hut.fi/projects/somtoolbox/package/docs2/somtoolbox.html
[16] Doneya, S.C., Kleypasa, J.A., Sarmientob, J.L. and Falkowski, P.G. (2002) The US JGOFS Synthesis and Modeling Project—An Introduction. Deep-Sea Research II, 49, 1-20.
http://dx.doi.org/10.1016/S0967-0645(01)00092-3
[17] Viterbi, A.J. (1998) An Intuitive Justification and a Simplified Implementation of a MAP Decoder for Convolutional Codes. IEEE Journal on Selected Areas in Communications, 16, 260-264.
http://dx.doi.org/10.1109/49.661114
[18] Hagenauer, J. and Hoeher, P. (1989) A Viterbi Algorithm with Soft-Decision Outputs and Its Applications. IEEE Global Telecommunications Conference and Exhibition “Communications Technology for the 1990s and Beyond” (GLOBECOM), 1680-1686.