OJSS  Vol.4 No.8 , August 2014
Contribution of the Magnetic Susceptibility to the Characterization of the Babouri-Figuil Cretaceous Basin
ABSTRACT


Magnetic susceptibility data from marine rocks can be used for global correlation due to synchronous variations in global erosion. This work, aims to show that, the magnetic susceptibility signature which exists in the cretaceous sediments of the Babouri-Figuil basin, resides mainly in the detrital constituents. Variations of amplitudes are observed, which can be useful for regional correlation.This amplitude variation results in the transgressive and regressive movements that give way to a fluctuation of detrital deposits because of erosion. Considering the sedimentological study, carried out, different microfacies have been identified in the basin, namely, fluvial facies and lake facies that sometimes contain fossils. The combination of detailed sedimentological analysis and sequence stratigraphy is based on the modeling of vertical and lateral variations within the basin. Finally, the interpretation of the magnetic susceptibility signal suggests that in the detrital domain, this signal is mainly controlled by environmental parameters such as the agitation of the water and the rate of sedimentation, as well as diagenesis.



Cite this paper
Balla Ondoa, A. , Ngos III, S. , Ndjeng, E. , Abolo, A. and N’Nanga, A. (2014) Contribution of the Magnetic Susceptibility to the Characterization of the Babouri-Figuil Cretaceous Basin. Open Journal of Soil Science, 4, 272-283. doi: 10.4236/ojss.2014.48029.
References
[1]   Robinson, S.G. (1993) Lithostratigraphic Applications for Magnetic Susceptibility Logging of Deep-Sea Sediment Cores: Examples from ODP Leg 115. In: Hailwood, E.A. and Kidd, R.B., Eds., High Resolution Stratigraphy, Geological Society Special Publication, 65-98.

[2]   Curry, W.B., Schneider, D.A. and Party, L.S. (1995) Ceara Rise Sediments Document Ancient Climate Change. EOS, 76, 41-45.

[3]   Crick, R.E., Ellwood, B.B., El Hassani, A. and Feist, R. (2000) Proposed Magnetostratigraphy Susceptibility Magnetostratotype for the Eifelian-Givetian GSSP (Anti-Atlas, Morocco). Episodes, 23, 93-101.

[4]   Arai, K., Sakai, H. and Konishi, K. (1997) High-Resolution Rock-Magnetic Variability in Shallow Marine Sediment: A Sensitive Paleoclimatic Metronome. Sedimentary Geology, 110, 7-23. http://dx.doi.org/10.1016/S0037-0738(96)00082-6

[5]   Lean, C.M.B. and McCave, I.N. (1998) Glacial to Interglacial Mineral Magnetic and Palaeoceanographic Changes at Catham Rise, SW Pacific Ocean. Earth and Planetary Science Letters, 163, 247-260. http://dx.doi.org/10.1016/S0012-821X(98)00191-5

[6]   Da Silva, A.C. and Boulvain, F. (2006) Upper Devonian Carbonate Platform Correlations and Sea Level Variations Recorded in Magnetic Susceptibility. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 373-388. http://dx.doi.org/10.1016/j.palaeo.2006.02.012

[7]   Crick, R.E., Ellwood, B.B., El Hassani, A., Feist, R. and Hladil, J. (1997) Magnetosusceptibility Event and Cyclostratigraphy (MSEC) of the Eifelian-Givetian GSSP and Associated Boundary Sequences in North Africa and Europe. Episodes, 20, 167-175.

[8]   Racki, G., Racka, M., Matyja, H. and Devleeschouwer, X. (2002) The Frasnian/Famennian Boundary Interval in the South Polish-Moravian Shelf Basins: Integrated Event-Stratigraphical Approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 251-297. http://dx.doi.org/10.1016/S0031-0182(01)00481-3

[9]   Da Silva, A.C., Mabille, C. and Boulvain, F. (2009) Influence of Sedimentary Setting on the Use of Magnetic Susceptibility: Examples from the Devonian of Belgium. Sedimentology, 56, 1292-1306. http://dx.doi.org/10.1111/j.1365-3091.2008.01034.x

[10]   Ellwood, B.B., Crick, R.E., El Hassani, A., Benoist, S.L. and Young, R.H. (2000) Magnetosusceptibility Event and Cyclostratigraphy Method Applied to Marine Rocks: Detrital Input versus Carbonate Productivity. Geology, 28, 1135- 1138. http://dx.doi.org/10.1130/0091-7613(2000)28<1135:MEACMA>2.0.CO;2

[11]   Da Silva, A.C., Potma, K., Weissenberger, J.A.W., Whalen, M.T., Humblet, M., Mabille, C. and Boulvain, F. (2009) Magnetic Susceptibility Evolution and Sedimentary Environments on Carbonate Platform Sediments and Atolls, Comparison of the Frasnian from Belgium and Alberta, Canada. Sedimentary Geology, 214, 3-18. http://dx.doi.org/10.1016/j.sedgeo.2008.01.010

[12]   Ellwood, B.B., Tornkin, J.H., El Hassani, A., Bultynck, P., Brett, C., Schindler, E., Feist, R. and Bartholomew, A.J. (2011) A Climate-Driven Model and Development of a Floating Point Time Scale for the Entire Middle Devonian Givetian Stage: A Test Using Magnetostratigraphy Susceptibility as a Climate Proxy. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 85-95.

[13]   Devleeschouwer, X., Petitclerc, E., Spassov, S. and Préat, A. (2010) The Givetian-Frasnian Boundary at Nismes Parastratrotype (Belgium): The Magnetic Susceptibility Signal Controlled by Ferromagnetic Minerals. Geologica Belgica, 13/4, 345-360. http://dx.doi.org/10.1016/j.palaeo.2010.10.014

[14]   Bessong, M. (2012) Paléoenvironnement et diagenèse dans un réservoir gréseux d’age Crétacé du fossé de la Bénoué au Nord Cameroun: les grès de Garoua.

[15]   Roch, E. (1953) Itinéraires géologique dans le Nord du Cameroun et le Sud—Ouest du territoire du Tchad. Bulletin du service des Mines, 1, 1-110.

[16]   Schwoerer, P. (1965) Notice explicative sur la feuille de Garoua-Est. Carte géologique de reconnaissance au 1/500,000. Direction des Mines et de la Géologie, 49.

[17]   Ndjeng E. (1992) Modèle d’évolution géodynamique de deux bassins Crétacé inférieur du Nord-Cameroun: BabouriFiguil et Mayo Oulo-léré. Thèse d’Etat Université de Yaoundé, 311.

[18]   da Silva, A.C. and Boulvain, F. (2002) Sedimentology, Magnetic Susceptibility and Isotopes of a Middle Frasnian Carbonate Platform: Tailfer Section, Belgium. Facies, 46, 89-102. http://dx.doi.org/10.1007/BF02668075

[19]   Crick, R.E., Ellwood, B.B., Hladil, J., El Hassani, A., Hrouda, F. and Chlupác, I. (2001) Magnetostratigraphy Susceptibility of the Pridolian-Lochkovian (Silurian-Devonian) GSSP (Klonk, Czech Republic) and a Coeval Sequence in Anti-Atlas Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 73-100. http://dx.doi.org/10.1016/S0031-0182(00)00233-9

[20]   Ellwood, B.B., Crick, R.E. and El Hassani, A. (1999) The Magneto-Susceptibility Event and Cyclostratigraphy (MSEC) Method Used in Geological Correlation of Devonian Rocks from Anti-Atlas Morocco. The American Association of Petroleum Geologists Bulletin, 83, 1119-1134.

[21]   Dejax, B. (1989) Les flores fossiles du bassin d’Hamakoussou, Crétacé inférieur du Nord Cameroun. Géologie de l’Afrique et de l’Atlantique Sud.

[22]   Michard, J.C., De Broin, F., Brunet, M. and Hell, J. (1990) Le plus ancien crocodilien néosuchien spécialisé à caractère “eusuchien” du continent africain (Crétacé inférieur, Cameroun). t. 311, série II, Comptes rendus de l’Académie des sciences, Paris, 365-371.

[23]   Cojan, I. and Thiry, M. (1992) Seismically Induced Deformation Structures in Oligocène Sballow-Marine and Aeolian Coastal Sands (Paris Basin). Tectonophisic, 206, 79-89. http://dx.doi.org/10.1016/0040-1951(92)90369-H

[24]   McNeill, D.F. (2005) Accumulation Rates from Well-Dated Neogene Carbonate Platforms & Margins. Sedimentary Geology, 175, 73-87. http://dx.doi.org/10.1016/j.sedgeo.2004.12.032

[25]   Quinquerez, A., Allemand, P., Dromart, G. and Garcia, J.P. (2004) Impact of Storms on Mixed Carbonate and Siliciclastic Shelves: Insights from Combined Diffusive and Fluid-Flow Transport Stratigraphic forward Model. Basin Research, 16, 431-449. http://dx.doi.org/10.1111/j.1365-2117.2004.00247.x

[26]   Da Silva, A.C., Mabille, C. and Boulvain, F. (2009) Influence of Sedimentary Setting on the Use of Magnetic Susceptibility: Examples of the Devonian of Belgium. Sedimentology, 56, 1292-1306.

[27]   Mabille, C. and Boulvain, F. (2007) Sedimentology and Magnetic Susceptibility of the Upper Eifelian-Lower Givetian (Middle Devonian) in SW Belgium: Insights into Carbonate Platform Initiation. Geological Society of London, Special Publication, 275, 109-123.

[28]   Crick, R.E., Ellwood, B.B. and El Hassani, A. (1994) Integration of Biostratigraphy, Magnetic Susceptibility and Relative Sea-Level Change: A New Look at High Resolution Correlation. Subcommission on Devonian Stratigraphy, Newsletter, 11, 59-66.

[29]   Bityukova, L., Shogenova, A. and G?tze, H.J. (1998) Influence of Chemical Composition on Petrophysical Properties of Early Paleozoic Carbonate Rocks in Estonia. Physics and Chemistry of the Earth, 23, 309-316.

[30]   Shogenova, A. (1999) The Influence of Dolomitization on the Magnetic Properties of Lower Palaeozoic Carbonate Rocks in Estonia. Geological Society of London, Special Publication, 151, 167-180. http://dx.doi.org/10.1144/GSL.SP.1999.151.01.17

[31]   Tile, M.S. and Linington, R.E. (1975) Effect of Climate on the Magnetic Susceptibility of Soils. Nature, 256, 565-566. http://dx.doi.org/10.1038/256565a0

[32]   Riquier, L., Averbuch, O., Devleeschouwer, X. and Tribovillard, N. (2010) Diagenetic versus Detrital Origin of the Magnetic Susceptibility Variations in Some Carbonate Frasnian-Famennian Boundary Sections from Northern Africa and Western Europe: Implications for Paleoenvironmental Reconstructions. International Journal of Earth Sciences, 99, 57-73. http://dx.doi.org/10.1007/s00531-009-0492-7

[33]   Mabille, C. and Boulvain, F. (2007) Sedimentology and Magnetic Susceptibility of the Couvin Formation (Eifelian, South Western Belgium): Carbonate Plateform Initiation in a Hostile World. Geologica Belgica, 10, 47-67.

 
 
Top