IJAA  Vol.4 No.3 , September 2014
Bianchi Type-V Cosmological Model with Linear Equation of State in Brans-Dicke Theory of Gravitation
ABSTRACT

A Bianchi type-V space time is considered with linear equation of state in the scalar tensor theory of gravitation proposed by Brans and Dicke. We use the assumption of constant deceleration parameter and power law relation between scalar field ø and scale factor R to find the solutions. Some physical and kinematical properties of the model are also discussed.


Cite this paper
Kandalkar, S. and Samdurkar, S. (2014) Bianchi Type-V Cosmological Model with Linear Equation of State in Brans-Dicke Theory of Gravitation. International Journal of Astronomy and Astrophysics, 4, 429-436. doi: 10.4236/ijaa.2014.43038.
References
[1]   Einstein, A. (1916) Die Grundlage der allgemeinen Relativitatstheorie. Annals of Physics, 49, 769-822.

[2]   Jordan, P. (1955) Schwerkraft and Weltall. Friedch Vieweg and Sohn, Braunschweig, 207-213.

[3]   Brans, C.H. and Dicke, R.H. (1961) Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review, 24, 925-935. http://dx.doi.org/10.1103/PhysRev.124.925

[4]   Nordtvedt, K. (1970) Post-Newtonian Metric for a General Class of Scalar-Tensor Gravitational Theories and Observational Consequences. The Astrophysical Journal, 161, 1059-1067.
http://dx.doi.org/10.1086/150607

[5]   Ross, D.K. (1972) Scalar-Tensor Theory of Gravitation. Physics Review D, 5, 284-289.
http://dx.doi.org/10.1103/PhysRevD.5.284

[6]   Schmidt, G., Greiner, W., Heinz, U. and Muller, B. (1981) Stability of Massive Objects in a New Scalar-Tensor Theory. Physical Review D, 24, 1484-1490. http://dx.doi.org/10.1103/PhysRevD.24.1484

[7]   Singh, T. and Rai, L.N. (1983) Scalar Tensor Theories of Gravitation Foundations & Prospects. General Relativity and Gravitation, 15, 875-902. http://dx.doi.org/10.1007/BF00778798

[8]   Nariai, H. (1972) Hamilton Approach to the Dynamics of Expanding Homogeneous Universe in the Brans-Dicke Cosmology. Progress of Theoretical Physics, 47, 1824-1843.
http://dx.doi.org/10.1143/PTP.47.1824

[9]   Reddy, D.R.K. and Rao, V.U.M. (1981) Field of Charged Particle in Brans-Dicke Theory of Gravitation. Journal of Physics: Mathematical and General, 14, 1973-1976.
http://dx.doi.org/10.1088/0305-4470/14/8/021

[10]   Banerjee, A. and Santos, N.O. (1982) Bianchi Type II Cosmological Models in Brans-Dicke Theory. Nuovo Cimento B, 67, 31-40. http://dx.doi.org/10.1007/BF02721068

[11]   Singh, T., Rai, L.N. and Singh, T. (1983) An Anisotropic Cosmological Model in Brans-Dicke Theory. Astrophysics and Space Science, 96, 95-105. http://dx.doi.org/10.1007/BF00661944

[12]   Ram, S. (1983) Spatially Homogeneous and Anisotropic Cosmology Solution in Brans-Dicke Theory. General Relativity and Gravitation, 15, 635-640. http://dx.doi.org/10.1007/BF00759040

[13]   Ram, S. and Singh, D.K. (1984) LRS Bianchi Type-V Vacuum Cosmological Solution in Brans-Dicke Theory. Astrophysics and Space Science, 98, 193-196. http://dx.doi.org/10.1007/BF00651959

[14]   Berman, M.S., Som, M.M. and Gomide, F.D. (1989) Brans-Dicke Static Universe. General Relativity and Gravitation, 21, 287-292. http://dx.doi.org/10.1007/BF00764101

[15]   Reddy, D.R.K., Naidu, R.L. and Rao, V.U.M. (2007) A Cosmological Model with Negative Constant Deceleration Parameter in Brans-Dicke Theory. International Journal of Theoretical Physics, 46, 1443-1448. http://dx.doi.org/10.1007/s10773-006-9283-0

[16]   Reddy, D.R.K. and Rao, N.V. (2001) Some Cosmological Model in Scalar Tensor Theory of Gravitation. Astrophysics and Space Science, 277, 461-472. http://dx.doi.org/10.1023/A:1012543323667

[17]   Reddy, D.R.K. and Rao, M.V.S. (2006) A Cosmological Model with Negative Constant Deceleration Parameter in A Scalar-Tensor Theory. Astrophysics and Space Science, 306, 171-174.
http://dx.doi.org/10.1007/s10509-006-9210-0

[18]   Sáez, D. and Ballester, V.J. (1985) A Simple Coupling with Cosmological Implication. Physics Letters A, 113, 467-470. http://dx.doi.org/10.1016/0375-9601(86)90121-0

[19]   Fransworth, D.L. (1967) Some New General Relativistic Dust Metrices Possessing String Isometrices. Journal of Mathematical Physics, 8, 2315-2317. http://dx.doi.org/10.1063/1.1705157

[20]   Collins, C.B. (1974) Tilting at Cosmological Singularities. Communications in Mathematical Physics, 39, 131-151. http://dx.doi.org/10.1007/BF01608392

[21]   Maartens, R. and Nel, S.D. (1978) Decomposable Differential Operators in a Cosmological Context. Communications in Mathematical Physics, 59, 273-283. http://dx.doi.org/10.1007/BF01611507

[22]   Wainwright, J., Ince, W.C.W. and Marshman, B.J. (1979) Spatially Homogeneous and Inhomogeneous Cosmologies with Equation of State p=μ. General Relativity and Gravitation, 10, 259-271.
http://dx.doi.org/10.1007/BF00759860

[23]   Nayak, B.K. and Sahoo, B.K. (1989) Bianchi Type-V Models with a Matter Distribution Admitting Anisotropic Pressure and Heat Flow. General Relativity and Gravitation, 21, 211-225.
http://dx.doi.org/10.1007/BF00764095

[24]   Ram, S. (1990) Bianchi Type-V Perfect Fluid Space Times. International Journal of Theoretical Physics, 29, 901-906. http://dx.doi.org/10.1007/BF00675107

[25]   Roy, S.R. and Singh, J.P. (1983) LRS Bianchi Type-V Universe Filled with Matter and Radiation. Astrophysics and Space Science, 96, 303-312. http://dx.doi.org/10.1007/BF00651674

[26]   Roy, S.R. and Singh, J.P. (1985) A Bianchi Type-V Universe with Stiff Fluid and Electromagnetic Radiation. Australian Journal of Physics, 38, 763-768. http://dx.doi.org/10.1071/PH850763

[27]   Banerjee, A. and Sanyal, A.K. (1988) Irrotational Bianchi Type-V Viscous Fluid Cosmology with Heat Flux. General Relativity and Gravitation, 20, 103-113. http://dx.doi.org/10.1007/BF00759320

[28]   Coley, A.A. (1990) Bianchi V Imperfect Fluid Cosmology. General Relativity and Gravitation, 22, 3-18.

[29]   Bali, R. and Singh, D.K. (2005) Bianchi Type-V Bulk Viscous Fluid String Dust Cosmological Model In General Relativity. Astrophysics and Space Science, 300, 387-394. http://dx.doi.org/10.1007/s10509-005-0152-8

[30]   Bali, R. and Meena, B.L. (2004) Conformally Flat Tilted Bianchi Type-V Cosmological Models in General Relativity. Pramana, 62, 1007-1014. http://dx.doi.org/10.1007/BF02705248

[31]   Bali, R. and Jain, S. (2007) The Bianchi Type-V Magnetized String Dust Cosmological Model in General Relativity. International Journal of Modern Physics D, 16, 1769-1781.
http://dx.doi.org/10.1142/S0218271807011073

[32]   Lorenz, D. (1981) An Exact Bianchi Type-V Tilted Cosmological Model with Matter and an Electromagnetic Field. General of Relativity and Gravitation, 13, 795-805.
http://dx.doi.org/10.1007/BF00758217

[33]   Singh, T. and Chaubey, R. (2006) Bianchi Type-V with a Perfect Fluid and A-Term. Pramana, 67, 415-428. http://dx.doi.org/10.1007/s12043-006-0002-4

[34]   Singh, T. and Chaubey, R. (2006) Bianchi Type-V Universe with a Viscous Fluid and A-Term. Pramana, 68, 721-734. http://dx.doi.org/10.1007/s12043-007-0072-y

[35]   Singh, J.K. (2007) Some Cosmological Models with Heat and Null Radiation Flow. Astrophysics and Space Science, 310, 241-244. http://dx.doi.org/10.1007/s10509-007-9505-9

[36]   Singh, T. and Agrawal, A.K. (1993) Homogeneous Anisotropic Cosmological Models with Variable Gravitational and Cosmological “Constant”. International Journal of Theoretical Physics, 32, 1041-1059. http://dx.doi.org/10.1007/BF01215310

[37]   Pradhan, A. and Yadav, V.K. (2002) Bulk Viscous Anisotropic Cosmological Models with Variable G and Λ. International Journal of Modern Physics D, 11, 893-912.
http://dx.doi.org/10.1142/S0218271802002050

[38]   Thirukkanesh, S. and Maharaj, S.D. (2008) Charged Anisotropic Matter with a Linear Equation of State. Classical and Quantum Gravity, 25, 235001.

[39]   Berman, M.S. (1983) A Special Law of Variation for Hubble’s Parameter. Il Nuovo Cimento B, 74, 182-186. http://dx.doi.org/10.1007/BF02721676

[40]   Pimentel, L.O. (1985) Exact Cosmological Solutions in Scalar-Tensor with Cosmological Constant. Astrophysics and Space Science, 112, 175-183. http://dx.doi.org/10.1007/BF00668418

[41]   Johri, V.B. and Kalyani, D. (1994) Cosmological Models with Constant Deceleration Parameter in Brans-Dicke Theory. General Relativity and Gravitation, 26, 1217-1232.
http://dx.doi.org/10.1007/BF02106714

[42]   Ahmadi-Azar, E. and Riazi, N. (1995) A Class of Cosmological Solutions of Brans-Dicke Theory with Cosmological Constant. Astrophysics and Space Science, 226, 1-5.
http://dx.doi.org/10.1007/BF00626893

 
 
Top