OJS  Vol.4 No.5 , August 2014
Bayesian Analysis of Simple Random Densities
ABSTRACT

A tractable nonparametric prior over densities is introduced which is closed under sampling and exhibits proper posterior asymptotics.


Cite this paper
F., P. and Pereira, C. (2014) Bayesian Analysis of Simple Random Densities. Open Journal of Statistics, 4, 377-390. doi: 10.4236/ojs.2014.45037.
References
[1]   Ferguson, T. (1973) A Bayesian Analysis of Some Nonparametric Problems. The Annals of Statistics, 1, 209-230.
http://dx.doi.org/10.1214/aos/1176342360

[2]   Blackwell, D. (1973) Discreteness of Ferguson Selections. The Annals of Statistics, 1, 356-358.
http://dx.doi.org/10.1214/aos/1176342373

[3]   Gosh, J.K. and Ramamoorthi, R.V. (2002) Bayesian Nonparametrics. Springer, New York.

[4]   Thorburn, D. (1986) A Bayesian Approach to Density Estimation. Biometrika, 73, 65-75.
http://dx.doi.org/10.2307/2336272

[5]   Lenk, P.J. (1988) The Logistic Normal Distribution for Bayesian, Nonparametric, Predictive Densities. Journal of the American Statistical Association, 83, 509-516.
http://dx.doi.org/10.1080/01621459.1988.10478625

[6]   Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods. 2nd Edition, Springer, New York.
http://dx.doi.org/10.1007/978-1-4757-4145-2

[7]   Billingsley, P. (1995) Probability and Measure. 3rd Edition, Wiley-Interscience, New Jersey.

[8]   Ash, R.B. (2000) Probability and Measure Theory. 3rd Edition, Harcourt/Academic Press, Massa- chusetts.

[9]   Schervish, M.J. (1995) Theory of Statistics. Springer, New York.
http://dx.doi.org/10.1007/978-1-4612-4250-5

[10]   Bazaraa, M.S. and Shetty, C.M. (2006) Nonlinear Programming: Theory and Algorithms. 3rd Edition, Wiley-Interscience, New Jersey.

 
 
Top