OJEMD  Vol.4 No.8 , August 2014
Mitochondrial Dysfunction in Duchenne Muscular Dystrophy
Abstract: Muscular Dystrophy (MD) is an X-linked recessive disease affecting mainly boys at a rate of 1 in every 3500 live births. The most common and severe form of the disease is Duchenne Muscular Dystrophy (DMD). The disease is characterized by a relatively rapid wasting of skeletal muscle tissue to a point that leads to paralysis in all patients that suffer from the disease. Unfortunately, due to respiratory or cardiac muscle failure, death occurs in most patients around the age of 30. Currently, the lack of the protein dystrophin is thought to be the chief cause of disease in DMD patients. In addition to a lack of dystrophin, studies are emerging that are painting a picture of a more intricate connection between mitochondrial dysfunction and DMD where increased intracellular and inter-mitochondrial calcium has been shown to cause mitochondrial swelling, loss of mitochondrial membrane integrity, cell death and muscle atrophy. In this article, we will discuss the evidence that places the mitochondrion as a central participant in the etiology of DMD and describe how the relationship between increased intracellular calcium, mitochondrial permeability and dysfunction culminates in muscle loss.
Cite this paper: Kelly-Worden, M. and Thomas, E. (2014) Mitochondrial Dysfunction in Duchenne Muscular Dystrophy. Open Journal of Endocrine and Metabolic Diseases, 4, 211-218. doi: 10.4236/ojemd.2014.48020.

[1]   Honeycomb, J. and Anand, R. (1989) Molecular Analysis of the Duchenne Muscular Dystrophy Locus.
Comparative Biochemistry and Physiology, 93A, 125-131.

[2]   Millay, D.P., Sargent, M.A., Osinska, H., Baines, C.P., Barton, E.R., Vuagniaux, G., Sweeney, H.L., Ro-
bbins, J. and Molkentin, J.D. (2008) Genetic and Pharmacologic Inhibition of Mitochondrial Dependent
Necrosis Attenuates Muscular Dystrophy. Nature Medicine, 14, 442-447.

[3]   Perumal, A.R., Rajeswaran, J. and Nalini, A. (2013) Neuropsychological Profile of Duchenne Muscular Dystrophy. Applied Neuropsychology: Child.

[4]   Deconinck, N. and Dan, B. (2007) Pathophysiology of Duchenne Muscular Dystrophy: Current Hypotheses. Pediatric Neurology, 36, 1-7.

[5]   Jorgensen, L.H., Blain, A., Greally, E., Laval, S.H., Blamire, A.M., Davison, B.J., Brinkmeier, H., MacGowan, G.A., Schroder, H.D., Bushby, K., Straub, V. and Lochmüller, H. (2011) Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle. American Journal of Pathology, 178, 273-283.

[6]   Albrekkan, F.M. and Kelly-Worden, M. (2013) Mitochondrial Dysfunction and Alzheimer’s Disease. Op-
en Journal of Endocrine and Metabolic Diseases, 3, 14-19.

[7]   Pinton, P., Giorgi, C., Siviero, R., Zecchini, E. and Rizzuto, R. (2008) Calcium and Apoptosis: ER-Mitoc-
hondrial Ca2+ Transfer and the Control of Apoptosis. Oncogene, 27, 6407-6418.

[8]   Onopiuk, M., Brutkowski, W., Wierzbika, K., Wojcichowska, S., Szczepanowka, J., Fronk, J., Lochmuller, H., Gorecki, D.C. and Zablocki, K. (2009) Mutation in Dystrophin-Encoding Gene Affects Energy Metabolism in Mouse Myoblasts. Biochemical and Biophysical Research Communications, 386, 463-466.

[9]   Kavanagh, N., Ainscow, E.K. and Brand, M.D. (2000) Calcium Regulation of Oxidative Phosphorylation
in Rat Skeletal Muscle Mitochondria. Biochemica et Biophysica Acta, 1457, 57-70.

[10]   Gunter, T.E., Yule, D.I., Gunter, K.K., Eliseev, R.A. and Salter, J.D. (2004) Calcium and Mitochondria. FASEB Letters, 567, 96-102.

[11]   Godin, R., Daussin, F., Matecki, S., Li, T., Petrof, B.J. and Burelle, Y. (2012) Peroxisome Proliferator-Activated Receptor γ Coactivator1-α Gene Transfer Restores Mitochondrial Biomass and Improves Mitochondrial Calcium Handling in Post-Necrotic mdx Mouse Skeletal Muscle. The Journal of Physiology, 590, 5487-5502.

[12]   Green, D.R. and Kroemer, G. (2004) The Pathophysiology of Mitochondrial Cell Death. Science, 305, 626-629.

[13]   Zamzami, N., Larochette, N. and Kroemer, G. (2005) Mitochondrial Permeability Transition in Apoptosis and Necrosis. Cell Death and Differentiation, 12, 1478-1480.

[14]   Burelle, Y., Khairallah, M., Ascah, A., Allen, B.G., Deschepper, C.F., Petrof, B.J. and Rosiers, D.C. (2010) Alterations in Mitochondrial Function as a Harbinger of Cardiomyopathy: Lessons from the Dystrophic
Heart. Journal of Molecular and Cellular Cardiology, 48, 310-321.

[15]   Glancy, B. and Balaban, R.S. (2012) Role of Mitochondrial Ca2+ in the Regulation of Cellular Energetic. Biochemistry, 51, 2959-2973.

[16]   Sharma, U., Atri, S., Sharma, M.C., Sakar, C. and Jagannathan, N.R. (2003) Skeletal Muscle Metabolism in Duchenne Muscular Dystrophy (DMD): An In-Vitro Proton NMR Spectroscopy Study. Magnetic Resonance Imaging, 21, 145-153.

[17]   Griffin, J.L., Williams, H.J., Sang, E., Clarke, K., Rae, C. and Nicholson, J.K. (2001) Metabolic Profiling of Genetic Disorders: A Multitissue 1H-Nuclear Magnetic Resonance Spectroscopic and Pattern Recogni-
tion Study into Dystrophic Tissue. Analytical Biochemistry, 293, 16-21.

[18]   Naziroglu, M. (2009) Role of Selenium on Calcium Signaling and Oxidative Stress-Induced Molecular Pathways in Epilepsy. Neurochemical Research, 34, 2181-2191.

[19]   Ma, Q. (2014) Advances in Mechanisms of Anti-Oxidation. Discovery Medicine, 17, 121-130.

[20]   Carriedo, S.G., Sensi, S.L., Yin, H.Z. and Weiss, J.H. (2000) AMPA Exposures Induce Mitochondrial Ca2+ Overload and ROS Generation in Spinal Motor Neurons in Vitro. The Journal of Neuroscience, 20, 240-250.

[21]   Pervaiz, S., Taneja, R. and Ghaffari, S. (2009) Oxidative Stress Regulation of Stem and Progenitor Cells. Antioxidants & Redox Signaling, 11, 2777-2789.

[22]   Bernardi, P. (2013) The Mitochondrial Permeability Transition Pore: A Mystery Solved? Frontiers in Physiology, 4, 95.

[23]   Kinnally, K.W., Campo, M.L. and Tedeschi, H. (1989) Mitochondrial Channel Activity Studied by Patch-
Clamping Mitoplast. Journal of Bioenergetics and Biomembranes, 21, 497-506.

[24]   Petronilli, V., Szabó, I. and Zoratti, M. (1989) The Inner Mitochondrial Membrane Contains Ion-Condu-
cting Channels Similar to Those Found in Bacteria. FEBS Letters, 259, 137-143.

[25]   Zoratti, M., Szabó, I. and De Marchi, U. (2005) Mitochondrial Permeability Transitions: How Many Do-
ors to the House? Biochimica et Biophysica Acta (BBA), Bioenergetics, 1706, 40-52.

[26]   Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. and Schmid, F.X. (1989) Cyclophilin and Peptidyl-Prolyl cis-Trans Isomerase Are Probably Identical Proteins. Nature, 337, 476-478.

[27]   Takahashi, N., Hayano, T. and Suzuki, M. (1989) Peptidyl-Prolyl cis-Trans Isomerase Is the Cyclosporin A-Binding Protein Cyclophilin. Nature, 337, 473-475.

[28]   Connern, C.P. and Halestrap, A.P. (1992) Purification and N-Terminal Sequencing of Peptidyl-Prolyl cis-Trans Isomerase from Rat Liver Mitochondrial Matrix Reveals the Existence of a Distinct Mitochondrial Cyclophilin. Biochemical Journal, 284, 381-385.

[29]   Connern, C.P. and Halestrap, A.P. (1994) Recruitment of Mitochondrial Cyclophilin to the Mitochondrial Inner Membrane under Conditions of Oxidative Stress That Enhance the Opening of a Calcium-Sensitive Non-Specific Channel. Biochemical Journal, 302, 321-324.

[30]   Marchi, S. and Pinton, P. (2014) The Mitochondrial Calcium Uniporter Complex: Molecular Components, Structure and Physiopathological Implications. The Journal of Physiology, 592, 829-839.

[31]   Akopova, O.V., Kolchynskayia, L.Y., Nosar, V.Y., Smyrnov, A.N., Malisheva, M.K., Man’kovskaia, Y.N. and Sahach, V.F. (2011) The Effect of Permeability Transition Pore Opening on Reactive Oxygen Species Production in Rat Brain Mitochondria. Ukrainskii Biokhimicheskii Zhurnal, 83, 46-55.

[32]   Skulachev, V. (1996) Role of Uncoupled and Non-Coupled Oxidations in Maintenance of Safely Low Levels of Oxygen and Its One-Electron Reductants. Quarterly Reviews of Biophysics, 29, 169-202.

[33]   Korshunov, S.S., Skulachev, V.P. and Starkov, A.A. (1997) High Protonic Potential Actuates a Mechanism of Production of Reactive Oxygen Species in Mitochondria. FEBS Letters, 416, 15-18.

[34]   Suski, J.M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J. and Wieckowski, M.R. (2012) Relation between Mitochondrial Membrane Potential and ROS Formation. Methods in Molecular Biology, 810, 183-205.

[35]   Strauss, M., Hofhaus, G., Schroder, R.R. and Kühlbrandt, W. (2008) Dimer Ribbons of ATP Synthase
Shape the Inner Mitochondrial Membrane. EMBO Journal, 27, 1154-1160.

[36]   Thomas, D., Bron, P., Weimann, T., Dautant, A., Giraud, M.F., Paumard, P., et al. (2008) Supramolecular Organization of the Yeast F1F0-ATP Synthase. Biology of the Cell, 100, 591-603.

[37]   Rees, D.M., Leslie, A.G. and Walker, J.E. (2009) The Structure of the Membrane Extrinsic Region of Bovine ATP Synthase. Proceedings of the National Academy of Sciences of the United States of America, 106, 21597-21601.

[38]   Baker, L.A., Watt, I.N., Runswick, M.J., Walker, J.E. and Rubinstein, J.L. (2012) Arrangement of Subunits in Intact Mammalian Mitochondrial ATP Synthase Determined by cryo-EM. Proceedings of the
National Academy of Sciences of the United States of America, 109, 11675-11680.

[39]   Davies, K.M., Anselmi, C., Wittig, I., Faraldo-Gomez, J.D. and Kühlbrandt, W. (2012) Structure of the Yeast F1F0-ATP Synthase Dimer and Its Role in Shaping the Mitochondrial Cristae. Proceedings of the
National Academy of Sciences of the United States of America, 109, 13602-13607.

[40]   Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., et al. (2013) Dimers of Mitochondrial ATP Synthase Form the Permeability Transition Pore. Proceedings of the National Aca-
demy of Sciences of the United States of America, 110, 5887-5892.

[41]   Csukly, K., Ascah, A., Matas, J., Gardiner, P.F., Fontaine, E. and Burelle, Y. (2006) Muscle Denervation Promotes Opening of the Permeability Transition Pore and Increases the Expression of Cyclophilin D. The Journal of Physiology, 574, 319-327.

[42]   Reutenauer, J., Dorchies, O.M., Patthey-Vuadens, O., Vuagniaux, G. and Ruegg, U.T. (2008) Investigation of Debio 025, a Cyclophilin Inhibitor, in the Dystrophic mdx Mouse, a Model for Duchen-
ne Muscular Dystrophy. British Journal of Pharmacology, 155, 574-584.

[43]   Pellegrini, C., Zulian, A., Gualandi, F., Manzati, E., Merlini, L., Michelini, M.E., Benassi, L., Marmiroli, S., Ferlini, A., Sabatelli, P., Bernardi, P. and Maraldi, N.M. (2013) Melanocytes—A Novel Tool to Study Mitochondrial Dysfunction in Duchenne Muscular Dystrophy. Journal of Cellular Physiology, 228, 1323-1331.

[44]   Pauly, M., Daussin, F., Burelle, Y., Li, T., Godin, R., Fauconnier, J., Koechlin-Ramonatxo, C., Hugon, G., Lacampagne, A., Coisy-Quivy, M., Liang, F., Hussain, S., Matecki, S. and Petrof, B.J. (2012) AMPK Activation Stimulates Autophagy and Ameliorates Muscular Dystrophy in the mdx Mouse Diaphragm. American Journal of Pathology, 181, 583-592.

[45]   Tian, L.J., Cao, J.H., Deng, X.Q., Zhang, C.L., Qian, T., Song, X.X. and Huang, B.S. (2014) Gene Expression Profiling of Duchenne Muscular Dystrophy Reveals Characteristics along Disease Progression. Genetics and Molecular Research, 28, 1402-1411.