AJPS  Vol.5 No.18 , August 2014
Evaluating Nitrogen Behavior in Sugarcane after Fertilization Using Leaf and Sap Extract Analyzes
Abstract: Nitrogen (N) fertilization is important for sugarcane crops, for both agronomic and environmental reasons. Better use of N from fertilizer is required for crop management, and in order to achieve it, adequate N nutrition monitoring is necessary. Sap extract analysis is a sensitive technique that has been adopted in other crops to tackle this objective, and can be used for sugarcane. The aim of this study was to evaluate the behavior of N and the response of sugarcane after N fertilization, using sap and leaf tissue analysis. The study was undertaken in two experimental areas in 2012/2013 season, using ratoon cane, following application of 0, 50, 100, and 150 kg·ha-1 of N. The youngest visible leaves were sampled from sugarcane at five time points between 0 and 150 days after fertilization, to evaluate the nitrate, ammonium, and total N content of sap extract, and total N content of leaf tissue. At the first sampling point (30 days after N fertilizer application), mineral N in sap increased as a result of N fertilization in medium-textured soil, and remained high until 120 days after fertilization in clayey soil. The total N content of sap followed a similar behavior. Stalk yield was only observed to increase in sugarcane grown in the clayey soil. Sap analysis proved to be an efficient method for monitoring N status in sugarcane grown in different soil types.
Cite this paper: Joris, H. , Souza, T. , Montezano, Z. , Vargas, V. and Cantarella, H. (2014) Evaluating Nitrogen Behavior in Sugarcane after Fertilization Using Leaf and Sap Extract Analyzes. American Journal of Plant Sciences, 5, 2655-2664. doi: 10.4236/ajps.2014.518280.

[1]   Cantarella, H., Trivelin, P.C.O. and Vitti, A.C. (2007) Nitrogênio e enxofre na cultura da cana-de-açúcar. In: Yamada, T., Abdalla, S.R.S. and Vitti, G.C., Eds., Nitrogênio e Enxofre na Agricultura Brasileira, IPNI, Piracicaba, 349-412.

[2]   Galdos, M.V., Cerri, C.C., Lal, R., Bernoux, M., Feigl, B. and Cerri, C.E.P. (2010) Net Greenhouse Gas Fluxes in Brazilian Ethanol Production Systems. Global Change Biology Bioenergy, 2, 37-44.

[3]   Franco, H.C.J., Otto, R., Faroni, C.E., Vitti, A.C., Oliveira, E.C.A. and Trivelin, P.C.O. (2011) Nitrogen in Sugarcane Derived from Fertilizer under Brazilian Field Conditions. Field Crops Research, 121, 29-41.

[4]   Courtaillac, N., Baran, R., Oliver, R., Casabianca, H. and Ganry, F. (1998) Efficiency of Nitrogen Fertilizer in Sugarcane-Vertical System in Guadeloupe According to Growth and Ratoon Age of the Cane. Nutrient Cycling in Agroecosystems, 52, 9-17.

[5]   Dourado-Neto, D., Powlson, D., Bakar, R.A., Bacchi, O.O.S., Cong, P.T., Keerthisinghe, G., Ismaili, M., Rahman, S.M., Reichardt, K., Safwat, M.S.A., Sangakkara, R., Timm, L.C., Wang, J.Y., Zagal, E. and Kessel, C. (2010) Multiseason Recoveries of Organic and Inorganic Nitrogen-15 in Tropical Cropping Systems. Soil Science Society of America Journal, 74, 139-152.

[6]   Franco, H.C.J., Otto, R., Faroni, C.E., Vitti, A.C., Oliveira, E.C.A. and Trivelin, P.C.O. (2011) Nitrogen in Sugarcane Derived from Fertilizer under Brazilian Field Conditions. Field Crops Research, 121, 29-41.

[7]   Faroni, C.E., Trivelin, P.C.O., Franco, H.C.J., Vitti, A.C., Otto, R. and Cantarella, H. (2009) Nutritional Status of Sugar Cane (Planted Cane) in (15)N Experiments. Revista Brasileira de Ciencia do Solo, 33, 1919-1927.

[8]   Franco, H.C.J., Trivelin, P.C.O., Faroni, C.E., Vitti, A.C. and Otto, R. (2010) Stalk Yield and Technological Attributes of Planted Cane as Related to Nitrogen Fertilization. Scientia Agricola, 67, 579-590.

[9]   Quaggio, J.A., Souza, T.R., Zambrosi, F.C.B., Boaretto, R.M. and Mattos Jr., D. (2014) Nitrogen Fertilizer Forms Affect the Nitrogen Use Efficiency in Fertigated Citrus Groves. Journal of Plant Nutrition and Soil Science, 177, 404-411.

[10]   Souza, T.R.D., Bôas, R.L.V., Quaggio, J.A. and Salomão, L.C. (2012) Nutrients in the Sap of Fertigated Citrus Plants. Revista Brasileira de Fruticultura, 34, 482-492.

[11]   Espironelo, A., Raij, B., Penatti, C.P., Cantarella, H., Morelli, J.L., Filho, J.O., Landell, M.G.A. and Rossetto, R. (1997) Sugarcane. In: Raij, B., Ed., Recommendations of Fertilizer and Liming for the State of Sao Paulo, Instituto Agronomico, Campinas, 237-240.

[12]   Cadahía, C. and Lucena, J.J. (2005) Diagnostico de nutrición y recomendaciones de abonado. In: Cadahía, C., Ed., Fertirrigación: Cultivos hortícolas, frutales y ornamentales, Ediciones Mundi-Prensa, Madrid, 183-257.

[13]   Bataglia, O.C., Furlani, A.M.C., Teixeira, J.P.F., Furlani, P.R. and Gallo, J.R. (1983) Methods of Plant Chemical Analysis. Instituto Agronomico, Campinas.

[14]   Raij, B., Andrade, J.C., Cantarella, H. and Quaggio, J.A. (2001) Chemical Analysis for Soil Fertility Assessment. Instituto Agronomico, Campinas.

[15]   Ferreira, D. (2011) Sisvar: A Computer Statistical Analysis System. Ciência e Agrotecnologia, 35, 1039-1042.

[16]   Qafoku, N.P., Sumner, M.E. and Radcliffe, D.E. (2000) Anion Transport in Columns of Variable Charge Subsoils: Nitrate and Chloride. Journal of Environmental Quality, 29, 484-493.

[17]   Schuman, L.M. (2001) Phosphate and Nitrate Movement through Simulated Golf Greens. Water, Air, and Soil Pollution, 129, 305-318.

[18]   Ghiberto, P.J., Libardi, P.L., Brito, A.S. and Trivelin, P.C.O. (2011) Nitrogen Fertilizer Leaching in an Oxisol Cultivated with Sugarcane. Scientia Agricola, 68, 86-93.

[19]   Dwyer, L. (1995) Quantifying the Nonlinearity in Chlorophyll Meter Response to Corn Leaf Nitrogen Concentration. Journal of Plant Science, 75, 179-182.

[20]   Robinson, N., Brackin, R., Vinall, K., Soper, F., Holst, J., Gamage, H. and Schimidt, S. (2011) Nitrate Paradigm Does Not Hold up for Sugarcane. PLoS ONE, 6, Article ID: e19045.

[21]   Tejera, N., Ortega, E., Rodes, R. and Lluch, C. (2006) Nitrogen Compounds in the Apoplastic Sap of Sugarcane Stem: Some Implications in the Association with Endophytes. Journal of Plant Physiology, 163, 80-85.

[22]   Tejera, N.A., Ortega, E., Rodes, R. and Lluch, C. (2004) Influence of Carbon and Nitrogen Sources on Growth, Nitrogenase Activity, and Carbon Metabolism of Gluconacetobacter diazotrophicus. Canadian Journal of Microbiology, 50, 745-750.

[23]   Raij, B., Cantarella, H., Quaggio, J.A. and Furlani, A.M.C. (1996) Recommendations of Fertilization and Liming in São Paulo State. Instituto Agronomico and Fundação IAC, Campinas.

[24]   Boddey, R.M., Soares, L.H.B., Alves, B.J.R. and Urquiaga, S. (2008) Bioethanol Production in Brazil. In: Pimentel, D., Ed., Renewable Energy Systems: Environmental and Energetic Issues, Springer, New York, 321-356.

[25]   Filho, J.O., Rodella, A.A., Beltrame, J.A. and Lavorent, N.A. (1999) Doses, fontes e formas de aplicação de nitrogênio em cana-de-açúcar. STAB-Açúcar, álcool e Subprodutos, 17, 39-41.

[26]   Trivelin, P.C.O., Oliveira, M.W., Vitti, A.C., Gava, G.J.D. and Bendassolli, J.A. (2002) Nitrogen Losses of Applied Urea in the Soil-Plant System during Two Sugar Cane Cycles. Pesquisa Agropecuária Brasileira, 37, 193-201.

[27]   Gava, G.J.C., Trivelin, P.C.O., Vitti, A.C. and Oliveira, M.W. (2003) Recovery of Nitrogen (N-15) from Urea and Cane Trash by Sugar Cane Ratoon (Saccharum spp.). Revista Brasileira de Ciencia do Solo, 27, 621-630.

[28]   Malavolta, E. (2006) Manual de Nutrição Mineral de Plantas. Ceres, Sao Paulo.

[29]   Jarrell, W.M. and Beverly, R.B. (1981) The Dilution Effect in Plant Nutrition Studies. Advances in Agronomy, 34, 197-224.