Back
 NS  Vol.3 No.5 , May 2011
Design of supercontinuum generating photonic crystal fiber at 1.06, 1.31 and 1.55 µm wavelengths for medical imaging and optical transmission systems
Abstract: We propose broad supercontinuum spectrum generating highly nonlinear photonic crystal fiber (HN-PCF) which can be used in ultrahigh- resolution optical coherence tomography and optical transmission systems. Using full vector finite difference method, we investigated the different properties of HN-PCF. Broadband su-percontinuum spectrum is numerically calculated by using nonlinear Schr?dinger equation. Investigation showed that it is possible to obtain longitudinal resolution in a biological tissue of 1.3 μm, 1.2 μm and 1.1 μm by using picosecond continuum light at center wavelengths of 1.06 μm, 1.31 μm and 1.55 μm, respectively.
Cite this paper: Begum, F. and Namihira, Y. (2011) Design of supercontinuum generating photonic crystal fiber at 1.06, 1.31 and 1.55 µm wavelengths for medical imaging and optical transmission systems. Natural Science, 3, 401-407. doi: 10.4236/ns.2011.35054.
References

[1]   Russel, P.St.J. (2003) Photonic crystal fibers. Science, 299, 358-362. doi:10.1126/science.1079280

[2]   Champert, P.-A., Couderc, V., Leproux, P., Février, S., Tombelaine, V., Labonté, L., Roy, P., Froehly, C., Nérin, P. (2004) White-light supercontinuum generation in normally dispersive optical fiber using original multi-wave- length pumping system., Optics Express, 12, 4366-4371. doi:10.1364/OPEX.12.004366

[3]   Saitoh, K., Koshiba, M. (2004) Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommuinication window. Optics Express, 12, 2027-2032. doi:10.1364/OPEX.12.002027

[4]   Yamamoto, T., Kubota, H., Kawanishi, S., Tanaka, M., Yamaguchi, S. (2003) Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 11, 1537-1540. doi:10.1364/OE.11.001537

[5]   Hartl, I., Li, X.D., Chudoba, C., Ghanta, R.K., Ko, T.H., Fujimoto, J.G., Ranka, J.K., Windeler, R.S. (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 26, 608-610. doi:10.1364/OL.26.000608

[6]   Sotobayashi, H., Chujo, W., Kitayama, K. (2002) Photonic gateway: multiplexing formate conversions of OCDM-to-WDM and WDM-to-OCDM at 40 Gb/s (4 × 10 Gb/s). Journal of Lightwave Technology, 20, 2022-2028. doi:10.1109/JLT.2002.806769

[7]   He, G.S., Lin, T.C., Prasad, P.N., Kannan, R., Vaia, R.A., Tan, L.-S. (2002) New technic for degenerated two- photon absorption spectral measurements using femtose- cond continuum generation. Optics Express, 10, 566-574.

[8]   Agrawal, G.P. (1995). Nonlinear Fiber Optics. Academic Press, San Diego.

[9]   Youngquist, R.C., Carr, S., Davies, D.E.N. (1987) Optical coherence-domain reflectometry: a new optical evaluation technique. Optics Letters, 12, 158-160. doi:10.1364/OL.12.000158

[10]   Lim, H., Jiang, Y., Wang, Y., Huang, Y.-C., Chen, Z., Wise, F.W. (2005) Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm. Optics Letters, 30, 1171-1173. doi:10.1364/OL.30.001171

[11]   Tse, M.L.V., Horak, P., Poletti, F., Broderick, N.G.R., Price, J.H.V., Hayes, J.R., Richardson, D.J. (2006) Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles. Optics Express, 14, 4445- 4451. doi:10.1364/OE.14.004445

[12]   Kinjo, T., Namihira, Y., Arakaki, K., Koga, T., Kaijage, S.F., Razzak, S.M.A., Begum, F., Nozaki, S., Higa, H. (2010) Design of highly nonlinear dispersion-flattened square photonic crystal fiber for medical applications. Optics Review, 17, 61-65. doi:10.1007/s10043-010-0011-x

[13]   Colston, B.W., Jr., Sathyam, U.S., DaSilva, L.B., Everett, M.J., Stroeve, P., Otis, L.L. (1998) Dental OCT. Optics Express, 3, 230-238. doi:10.1364/OE.3.000230

[14]   Boppart, S.A., Bouma, B.E., Pitris, C., Southern, J.F., Brezinski, M.E., Fujimoto, J.G. (1998) In vivo cellular optical coherence tomography imaging. Nature Medicine, 4, 861-865. doi:10.1038/nm0798-861

[15]   Lee, J.H., Jung, E.J., Kim, C.-S. (2009) Incoherent, CW supercontinuum source based on Erbium fiber ASE for optical coherence tomography imaging. Proceedings of OptoEelectronics and Communication Conference, Hong- kong, 13-17 July 2009, 1-2.

[16]   Begum, F., Namihira, Y., Kinjo, T., Kaijage, S. (2010) Supercontinuum generation in photonic crystal fibers at 1.06, 1.31 and 1.55 μm wavelengths. Electronics Letter, 46, 1518-1520. doi:10.1049/el.2010.2133

[17]   Begum, F., Namihira, Y., Kaijage, S., Razzak, S.M.A., Hai, N.H., Kinjo, T., Miyagi, K., Zou, N. (2009) Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion. Optics communications, 282, 1416-1421. doi:10.1016/j.optcom.2008.12.005

[18]   Shen, L.-P., Huang, W.-P., Jian, S.-S. (2003) Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology, 21, 1644-1651. doi:10.1109/JLT.2003.814397

[19]   Ohmi, M., Ohnishi, Y., Yoden, K., Haruna, M. (2000) In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry. IEEE Transactions on Biomedical Engineering, 47, 1266-1270. doi:10.1109/10.867961

[20]   Reeves, W.H., Knight, J.C., Russell, P.St.J., Roberts, P.J. (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 10, 609-613.

[21]   Poletti, F., Finazzi, V., Monro, T.M., Broderick, N.G.R., Tse, V., Richardson, D.J. (2005) Inverse design and fabrication tolarences of ultra-flattened dispersion holey fibers. Optics Express, 13, 3728-3736. doi:10.1364/OPEX.13.003728

 
 
Top