ICA  Vol.5 No.3 , August 2014
A Parameter Varying PD Control for Fuzzy Servo Mechanism
ABSTRACT

This paper presents the formulation of novel implementation method based on parameter varying PD controller for fuzzy servo controllers. This formulation uses the approximation of fuzzy nonlinear function including error and error derivation in operation point. Obtained fuzzy control law has been employed to control angular position of servo using digital control technique applied to a typical microcontroller like AVR. The performance and robustness of modified fuzzy controller in comparison with PID controller evaluated in no load, applied external disturbance with different magnitude conditions has been studied. The simulation results showed that the proposed fuzzy controller has a considerable advantage in rise time, settling time and overshoot respect to PID controller when the servo system encounters with nonlinear features like saturation and friction.


Cite this paper
Soufi, N. , Moghaddam, M. , Boroujeni, S. and Vahidifar, A. (2014) A Parameter Varying PD Control for Fuzzy Servo Mechanism. Intelligent Control and Automation, 5, 156-169. doi: 10.4236/ica.2014.53018.
References
[1]   Heidari, Y., Noee, A.R., Shayanfar, H.A. and Salehi, S. (2010) Robust Control of DC Motor Using Fuzzy Sliding Mode Control with Fractional PID Compensator. The Journal of Mathematics and Computer Science, 1, 238-246.

[2]   Vikas, S.W., Mithun, M.B., Tulasi, R.D. and Kumar, A.D. (2010) A New Fuzzy Logic Based Modelling and Simulation of a Switched Reluctance Motor. Journal of Electrical Engineering & Technology, 5, 276-281.
http://dx.doi.org/10.5370/JEET.2010.5.2.276

[3]   Killingsworth, N.J. and Krstic, M. (2006) PID Tuning Using Extremum Seeking. IEEE Control Systems Magazine, 26, 70-79. http://dx.doi.org/10.1109/MCS.2006.1580155

[4]   Karthikraja, A. (2009) Stochastic Algorithm for PID Tuning of Bus Suspension System. International Conference on Control Automation Communication and Energy Conservation, Perundurai, 4-6 June 2009, 1-6.

[5]   Altinten, A., Karakurt, S., Erdogan, S. and Alpbaz, M. (2010) Application of Self-Tuning PID Control with Genetic Algorithm to a Semi-Batch Polystyrene Reactor. Indian Journal of Chemical Technology (IJCT), 17, 356-365.

[6]   Zadeh, L.A. (1973) Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions Systems Man and Cybernetics, SMC-3, 28-44.
http://dx.doi.org/10.1109/TSMC.1973.5408575

[7]   Natsheh, E. and Buragga, K.A. (2010) Comparison between Conventional and Fuzzy Logic PID Controllers for Controlling DC Motors. International Journal of Computer Science Issues (IJCSI), 7, 128-134.

[8]   Wang, X., Meng, Q., Yu, H., Yuan, Z. and Xu, X. (2005) Distributed Control for Cement Production of Vertical Shaft Kiln. International Journal for Information & Systems Sciences (IJISS), 1, 264-274.

[9]   Bing, G., Hairong, D. and Yanxin, Z. (2009) Speed Adjustment Braking of Automatic Train Operation System Based on Fuzzy-PID Switching Control. Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, 14-16 August 2009, 577-580.

[10]   Hanafy, M., Gomaa, M.M., Taher, M. and Wahba, A. (2011) Path Generation and Tracking for Car Automatic Parking Employing Swarm Algorithm. IEEE International Conference on Computer Engineering Systems, Cairo, 29 November 2011-1 December 2011, 99-104.

[11]   Mudi, R.K., Dey, C. and Lee, T.T. (2006) Neuro-Fuzzy Implementation of a Self-Tuning Fuzzy Controller. IEEE International Conference on Systems, Man and Cybernetics, 6, 5065-5070.

[12]   Akcayol, M.A. and Sagiroglu, S. (2007) Neuro Fuzzy Controller Implementation for an Adaptive Cathodic Protection on Iraq-Turkey Crude Oil Pipeline. Applied Artificial Intelligence: An International Journal, 21, 241-256.
http://dx.doi.org/10.1080/08839510701196345

[13]   Azzouna, A., Sakly, A., Trimeche, A., Mtibaa, A. and Benrejeb, M. (2010) PI-Like Fuzzy Control Implementation Using FPGA Technology. 5th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), Hammamet, 23-25 March 2010, 1-6.
http://dx.doi.org/10.1109/DTIS.2010.5487595

[14]   Baleghy, A.N. and Mashhadi, M.S.K. (2012) Design and Implementation Fuzzy Controller in the Frost-Free Refrigerator by Using Multivariate Regression. 20th Iranian Conference on Electrical Engineering (ICEE), Tehran, 15-17 May 2012, 840-844.
http://dx.doi.org/10.1109/IranianCEE.2012.6292470

[15]   Linkens, D.A., Wang, H., Bennett, S. and Xia, S. (1992) Using Qualitative Bond Graph Reasoning to Derive Look-Up Tables for Fuzzy Logic Controllers. First International Conference on Intelligent Systems Engineering, Edinburgh, 19-21 August 1992, 226-231.

[16]   Yu, J.Z., Hu, X.L. and Ding, R. (2009) Fuzzy Logic PID Based Control Design for Permanent Magnet Synchronous Motor Servo System. Second International Conference on Intelligent Computation Technology and Automation, 2, 728-731.

[17]   Tzeng, C.B., Liu, Y.C. and Young, M.S. (1995) A Preliminary Study of Fuzzy Control Parameters and Taguchi-Method on DC Servo Motor Control. IEEE/IAS International Conference on Industrial Automation and Control: Emerging Technologies, Taipei, 22-27 May 1995, 170-174.

[18]   Hao, Y. (2012) DSP-Based Fuzzy Logic Servo Motor Control. International Conference on Control Engineering and Communication Technology (ICCECT), Liaoning, 7-9 December 2012, 556-559.

[19]   Sang, H.K. and Lark, K.K. (2001) Design of a Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor. IEEE Proceedings International Symposium on Industrial Electronics (ISIE), 1, 435-440.

[20]   Kumar, N.S. and Kumar, C.S. (2010) Design and Implementation of Adaptive Fuzzy Controller for Speed Control of Brushless DC Motors. International Journal of Computer Applications, 1, 36-41.

[21]   Claudia, P. and Miguel, S. (2008) Speed Control of a DC Motor by Using Fuzzy Variable Structure Controller. Proceedings of the 27th Chinese Control Conference, Kunming, 16-18 July 2008, 311-315.

[22]   Namazov, M. and Basturk, O. (2010) DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers with Different Defuzzification Methods. Turkish Journal of Fuzzy Systems, 1, 36-54.

[23]   Huang, T.T., Chung, H.Y. and Lin, J.J. (1999) A Fuzzy PID Controller Being Like Parameter Varying PID. IEEE International Fuzzy Systems Conference Proceedings, 1, 269-276.

[24]   Jantzen, J. (2007) Foundations of Fuzzy Control. WS: John Wiley & Sons, Ltd.
http://dx.doi.org/10.1002/9780470061176

[25]   Pahuja, R., Verma, H.K. and Uddin, M. (2011) Design and Implementation of Fuzzy Temperature Control System for WSN Applications. IJCSNS International Journal of Computer Science and Network Security, 11, 1-10.

[26]   Mamdani, E.H. (1977) Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Transactions on Computers, C-26, 1182-1191.
http://dx.doi.org/10.1109/TC.1977.1674779

[27]   Alassar, A.Z., Abuhadrous, I.M. and Elaydi, H.A. (2010) Comparison between FLC and PID Controller for 5DOF Robot Arm. International Conference on Advanced Computer Control (ICACC), 5, 277-281.

[28]   Aslam, F. and Kaur, G. (2011) Comparative Analysis of Conventional, P, PI, PID and Fuzzy Logic Controllers for the Efficient Control of Concentration in CSTR. IJCA, 17, 12-16.

 
 
Top