ABB  Vol.5 No.9 , August 2014
Encapsulation of a Chloroform Molecule in a Peptide Nanotube
ABSTRACT

We determine the encapsulation of a chloroform molecule into a D,L-Ala cyclopeptide nanotube by investigating the interaction energy between the two molecular structures. We employ the Lennard-Jones potential and a continuum approach which assumes that the atoms are evenly distributed over the molecules providing average atomic densities. Our result demonstrates that the encapsulation depends on the size of the molecule and the internal diameter of the peptide nantube. In particular, the on-axis chloroform molecule is only accepted into a peptide nanotube whose internal radius is greater than 5 ?. If located near the edge of the nanotube, then it is unlikely that the chloroform molecule will enter the nanotube. This is due to the energy valley that the molecule will need to overcome to move past the edge into the open end of the nanotube.


Cite this paper
Rahmat, F. and Thamwattana, N. (2014) Encapsulation of a Chloroform Molecule in a Peptide Nanotube. Advances in Bioscience and Biotechnology, 5, 748-757. doi: 10.4236/abb.2014.59088.
References
[1]   Cheng, J., Zhu, J., Liu, B., Liao, Z. and Lai, Z. (2009) Structure of a Self-Assembled Single Nanotube of Cyclo[(-D-Ala-L-Ala)4-]. Molecular Simulation, 35, 625-630.
http://dx.doi.org/10.1080/08927020902787788

[2]   Hartgerink, J.D., Granja, J.R., Miligan, R.A. and Ghadiri, M.R. (1996) Self-Assembling Peptide Nanotubes. Journal of the American Chemical Society, 118, 43-50.
http://dx.doi.org/10.1021/ja953070s

[3]   Garcia-Fandino, R., Castedo, L., Granja, J.R. and Vasquez, S.A. (2010) Interaction and Dimerization Energies in Methyl-Blocked α, γ-Peptide Nanotube Segments. The Journal of Physical Chemistry B, 114, 4973-4983.
http://dx.doi.org/10.1021/jp910919k

[4]   Reches, M. and Gazit, E. (2006) Molecular Self-Assembly of Peptide Nanostructures: Mechanism of Association and Potential Uses. Current Nanoscience, 2, 105-111.
http://dx.doi.org/10.2174/157341306776875802

[5]   Zhu, J., Cheng, J. and Liao, Z. (2008) Investigation of Structures and Properties of Cyclic Peptide Nanotubes by Experiments and Molecular Dynamics. Journal of Computer-Aided Molecular Design, 22, 773-781.
http://dx.doi.org/10.1007/s10822-008-9212-9

[6]   Ghadiri, M.R., Granja, J.R. and Buehler, L.K. (1994) Artificial Transmembrane Ion Channels from Self-Assembling Peptide Nanotubes. Nature, 369, 301-304.
http://dx.doi.org/10.1038/369301a0

[7]   Liu, J., Fan, J., Min, T. and Zhou, W. (2010) Molecular Dynamics Simulation for the Structure of the Water Chain in a Transmembrane Peptide Nanotube. The Journal of Physical Chemistry A, 114, 2376-2383.
http://dx.doi.org/10.1021/jp910624z

[8]   Jishi, R.A., Braier, N.C., White, C.T. and Mintmire, J.W. (1998) Peptide Nanotubes: An Inert Environment. Physical Review B, 58, R16009.
http://dx.doi.org/10.1103/PhysRevB.58.R16009

[9]   Asthagiri, D. and Bashford, D. (2002) Continuum and Atomistic Modeling of Ion Partitioning into a Peptide Nanotube. Biophysical Journal, 82, 1176-1189.
http://dx.doi.org/10.1016/S0006-3495(02)75475-1

[10]   Hwang, H., Schatz, G.C. and Ratner, M.A. (2006) Steered Molecular Dynamics Studies of the Potential of Mean Force of a Na+ and K+ Ion in a Cyclic Peptide Nanotube. The Journal of Physical Chemistry B, 110, 26448-26460.
http://dx.doi.org/10.1021/jp0657888

[11]   Cheng, J., Zhu, J. and Liu, B. (2007) Molecular Modeling Investigation of Adsorption of Self-Assembled Peptide Nanotube of Cyclo-[(1 R, 3S)-γ-Acc-D-Phe]3 in CHCl3. Chemical Physics, 333, 105-111.
http://dx.doi.org/10.1016/j.chemphys.2007.01.014

[12]   Dehez, F., Tarek, M. and Chipot, C. (2007) Energetics of Ion Transport in a Peptide Nanotube. Journal of Physical Chemistry B, 111, 10633-10635.
http://dx.doi.org/10.1021/jp075308s

[13]   Engels, M., Bashford, D. and Ghadiri, M.R. (1995) Structure and Dynamics of Self-Assembling Peptide Nanotubes and the Channel-Mediated Water Organization and Self-Diffusion. A Molecular Dynamics Study. Journal of the American Chemical Society, 117, 9151-9158.
http://dx.doi.org/10.1021/ja00141a005

[14]   Tarek, M., Maigret, B. and Chipot, C. (2003) Molecular Dynamics Investigation of an Oriented Cyclic Peptide Nanotube in DMPC Bilayers. Biophysical Journal, 85, 2287-2298.
http://dx.doi.org/10.1016/S0006-3495(03)74653-0

[15]   Raghavender, U.S., Aravinda, K.S., Shamala, N. and Balaram, P. (2009) Hydrophobic Peptide Channels and Encapsulated Water Wires. Journal of the American Chemical Society, 132, 1075-1086. http://dx.doi.org/10.1021/ja9083978

[16]   Girifalco, L.A. (1991) Interaction Potential for Carbon (C60) Molecules. Journal of Physical Chemistry, 95, 5370-5371.
http://dx.doi.org/10.1021/j100167a002

[17]   Baowan, D. and Hill, J.M. (2007) Force Distribution for Double-Walled Carbon Nanotubes and Gigahertz Oscillators. Zeitschrift für angewandte Mathematik und Physik, 58, 857-875.
http://dx.doi.org/10.1007/s00033-006-6098-z

[18]   Baowan, D., Thamwattana, N. and Hill, J.M. (2007) Encapsulation of C60 Fullerenes into Single-Walled Carbon Nanotubes: Fundamental Mechanical Principles and Conventional Applied Mathematical Modeling. Physical Review B, 76, Article ID: 155411.
http://dx.doi.org/10.1103/PhysRevB.76.155411

[19]   Cox, B.J., Thamwattana, N. and Hill, J.M. (2008) Orientation of Spheroidal Fullerenes inside Carbon Nanotubes with Potential Applications as Memory Devices in Nano-Computing. Journal of Physics A: Mathematical and Theoretical, 41, Article ID: 235209.
http://dx.doi.org/10.1088/1751-8113/41/23/235209

[20]   Cox, B.J., Thamwattana, N. and Hill, J.M. (2007) Mechanics of Atoms and Fullerenes in Single-Walled Carbon Nanotubes. I. Acceptance and Suction Energies. Proceedings of the Royal Society A, 463, 461-476.

[21]   Baowan, D., Cox, B.J. and Hill, J.M. (2012) Instability of C60 Fullerene Interacting with Lipid Bilayer. Journal of Molecular Modeling, 18, 549-557.
http://dx.doi.org/10.1007/s00894-011-1086-4

[22]   Baowan, D. and Thamwattana, N. (2014) Modelling Encapsulation of Gold and Silver Nanoparticles inside Lipid Nanotubes. Physica A, 396, 149-154.
http://dx.doi.org/10.1016/j.physa.2013.11.003

[23]   Baowan, D., Peuschel, H., Kraegeloh, A. and Helms, V. (2013) Energetics of Liposomes Encapsulating in Silica Nanoparticles. Journal of Molecular Modeling, 19, 2459-2472.
http://dx.doi.org/10.1007/s00894-013-1784-1

[24]   Rahmat, F., Thamwattana, N. and Cox, B.J. (2011) Modelling Peptide Nanotubes for Artificial Ion Channels. Nanotechnology, 22, Article ID: 445707.
http://dx.doi.org/10.1088/0957-4484/22/44/445707

[25]   Granja, J.R. and Ghadiri, M.R. (1994) Channel-Mediated Transport of Glucose across Lipid Bilayers. Journal of the American Chemical Society, 116, 10785-10786.
http://dx.doi.org/10.1021/ja00102a054

[26]   Khazanovich, N., Granja, J.R., McRee, D.E., Milligan, R.A. and Ghadiri, M.R. (1994) Nanoscale Tubular Ensembles with Specified Internal Diameters. Design of a Self-Assembled Nanotube with a 13-.ANG. Pore. Journal of the American Chemical Society, 116, 6011-6012.
http://dx.doi.org/10.1021/ja00092a079

[27]   Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A. and Skiff, W.M. (1992) UFF, a Full Periodic Table Force Field for Molecular Mechanics and Dynamics Simulations. Journal of the American Chemical Society, 114, 10024-10035.
http://dx.doi.org/10.1021/ja00051a040

[28]   Martin, C.R. and Kohli, P. (2003) The Emerging Field of Nanotube Biotechnology. Nature Reviews Drug Discovery, 2, 29-37.
http://dx.doi.org/10.1038/nrd988

 
 
Top