[1] Jiao, C.W., Yang, W.G. and Gao, S.X. (2014) The k-Splittable Flow Model and a Heuristic Algorithm for Minimizing Congestion in the MPLS Networks. International Conference on Natural Computation (ICNC2014), Xiamen University, 19-21 August 2014.
[2] Baier, G., Kohler, E. and Skutella, M. (2005) The k-Splittable Flow Problem. Algorithmica, 42, 231-248. http://dx.doi.org/10.1007/s00453-005-1167-9
[3] Kleinberg, J.M. (1996) Single-Source Unsplittable Flow. Proceedings of the 37th Annual Symposium on Foundations of Computer Science, 68-77.
[4] Koch, R., Skutella, M. and Spenke, I. (2008) Maximum k-Splittable s,t-Flows. Theory of Computing Systems, 43, 56-66. http://dx.doi.org/10.1007/s00224-007-9068-8
[5] Kolliopoulos, S.G. (2005) Minimum-Cost Single-Source 2-Splittable Flow. Information Processing Letters, 94, 15-18. http://dx.doi.org/10.1016/j.ipl.2004.12.009
[6] Salazar, F. and Skutella, M. (2009) Single-Source k-Splittable Min-Cost Flows. Operations Research Letters, 37, 71-74. http://dx.doi.org/10.1016/j.orl.2008.12.004
[7] Truffot, J., Duhamel, C. and Mahey, P. (2005) Using Branch-and-Price to Solve Multicommodity k-Splittable Flow Problem. The Proceedings of International Network Optimisation Conference (INOC), Lisbonne, 20-23 March 2005.
[8] Truffot, J. and Duhamel, C. (2008) A Branch and Price Algorithm for the k-Splittable Maximum Flow Problem. Discrete Optimization, 5, 629-646. http://dx.doi.org/10.1016/j.disopt.2008.01.002
[9] Gamst, M., Jensen, P.N., Pisinger, D. and Plum, C. (2010) Two- and Three-Index Formulations of the Minimum Cost Multicommodity k-Splittable Flow Problem. European Journal of Operational Research, 202, 82-89. http://dx.doi.org/10.1016/j.ejor.2009.05.014
[10] Gamst, M. and Petersen, B. (2012) Comparing Branch-and-Price Algorithms for the Multi-Commodity k-Splittable Maximum Flow Problem. European Journal of Operational Research, 217, 278-286.
http://dx.doi.org/10.1016/j.ejor.2011.10.001
[11] Gamst, M. (2013) A Decomposition Based on Path Sets for the Multi-Commodity k-Splittable Maximum Flow Problem. Department of Management Engineering, Technical University of Denmark, DTU Management Engineering Report No. 6.
[12] Edmonds, J. and Karp, R.M. (1972) Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. Journal of the ACM, 19, 248-264. http://dl.acm.org/citation.cfm?id=321699 http://dx.
doi.org/10.1145/321694.321699
[13] http://www.informatik.uni-trier.de/~naeher/Professur/research/generators/maxflow/tg/