AJPS  Vol.5 No.17 , July 2014
Seed Size as Key Factor in Germination and Seedling Development of Copaifera langsdorffii (Fabaceae)

Seed size is a plastic trait of the plants that directly affect seed germination and seedling recruitment. This study aimed to investigate the relationship between seed size, seed germinability and seedling performance of Copaifera langsdorffii by testing four hypotheses: 1) larger seeds have higher germination percentage; 2) smaller seeds require less time to germinate and for initial development of the seedlings; 3) larger seeds produce more vigorous seedlings and 4) seed size negatively affects seedling root/shoot ratio. In 2011, we selected 30 individuals of C. langsdorffii from which 300 seeds were randomly collected in the plant canopy. All these seeds were weighted and placed in germination tray using vermiculite as substrate. Seed germinability and initial development of seedlings were monitored daily until cotyledons fell. Small seeds have higher germination percentage and germinate faster when compared to large seeds. Nonetheless, seedlings originated from larger seeds have longer development times, resulting in more vigorous seedlings. In addition, seedlings originating from small seeds allocate proportionally greater amount of resources to roots when compared to larger seeds. The fact that small seeds have higher germination percentage and faster germination favors the colonization of transient habitats. However, larger seeds produce more vigorous seedlings, favoring the seedling establishment in more stable habitats. Thus, we argue that high variability in seed size of C. langsdorffii favors its widespread geographic distribution.

Cite this paper: Souza, M. and Fagundes, M. (2014) Seed Size as Key Factor in Germination and Seedling Development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences, 5, 2566-2573. doi: 10.4236/ajps.2014.517270.

[1]   Wulff, R.D. (1986) Physiological Performance Seed Size Variation in Desmodium paniculatum. Journal of Ecology, 74, 99-114.

[2]   Armstrong, D.P. and Westoby, M. (1993) Seedlings from Large Seeds Tolerated Defoliation Better: A Test Using Phylogeneticaly Independent Contrasts. Ecology, 74, 1092-1100.

[3]   Burmeier, S. and Jensen, K. (2008) Is the Endangered Apium repens (Jacq.) Lag. Rare Because of a Narrow Regeneration Niche? Plant Species Biology, 23, 111-118.

[4]   Fagundes, M., Camargos, M.G. and Costa, F.V. (2011) A Qualidade do solo afeta a Germinação das Sementes e o Desenvolvimento das Plântulas de Dimorphandra mollis Benth. (Leguminosae: Mimosoidae). Acta Botanica Brasílica, 25, 908-915.

[5]   Ranieri, B.D., Pezzini, F.F., Garcia, Q.S., Chautems, A. and França, M.G.C. (2012) Testing the Regeneration Niche Hypothesis with Gesneriaceae (tribe Sinningiae) in Brazil: Implications for the Conservation of Rare Species. Austral Ecology, 37, 125-133.

[6]   Marques, M.C.M. and Oliveira, P.E.A.M. (2005) Características Reprodutivas das Espécies Vegetais da Planície Litorânea. História Natural e Conservação da Ilha do Mel. Editora da Universidade Federal do Paraná, Paraná.

[7]   Cordazzo, C.V. (2002) Effect of Seed Mass on Germination and Growth in Three Dominant Species in Southern Brazilian Coastal Dunes. Brazilian Journal of Biology, 62, 427-435.

[8]   Murali, K.S. (1997) Patterns of Seed Size, Germination and Seed Viability of tropical Tree Species in Southern India. Biotropica, 29, 271-279.

[9]   Mälken, T., Jorritsma-Wienk, L.D., Hoek, P.H. and Kroon, W.H. (2005) Only Seed Size Matters for Germination in Different Populations of the Dimorphic Tragopogonp ratensiss subsp. pratensis (Asteraceae). American Journal of Botany, 92, 432-437.

[10]   Yanlong, H., Mantang, W., Shujun, W., Yanhui, Z., Tao, M. and Guozhen, D. (2007) Seed Size Effect on Seedling Growth under Different Light Conditions in the Clonal Herb Ligularia virgaurea in Qinghai-Tibet Plateau. Acta Ecologica Sinica, 27, 3091-3108.

[11]   Silveira, F.A.O., Negreiros, D., Araújo, L.M. and Fernandes, G.W. (2012) Does Seed Germination Contribute to Ecological Breadth and Geographic Range? A Test with Sympatric Diplusodon (Lythraceae) Species from Rupestrian Fields. Plant Species Biology, 27, 170-173.

[12]   Leishman, M.R., Westoby, M. and Jurado, E. (1995) Correlates of Seed Size Variation: A Comparison among Five Temperate Floras. Journal of Ecology, 83, 517-529.

[13]   Silvertown, J. and Bullock, J.M. (2003) Do Seedlings in Gaps Interact? A Field Test of Assumptions in ESS Seed Size Models. Oikos, 101, 499-504.

[14]   Moles, A.T. and Westoby, M. (2006) Seed Size and Plant Strategy across the Whole Life Cycle. Oikos, 113, 91-105.

[15]   Baskin, C.C. and Baskin, J.M. (1998) Seeds—Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, New York.

[16]   Harper, J.L. (1977) Population Biology of Plants. Academic Press, New York.

[17]   Geritz, S.A. (1995) Evolutionarily Stable Seed Polymorphism and Small-Scale Spatial Variation in Seedling Density. The American Naturalist, 146, 685-707.

[18]   Ferreira, A.G. and Borghetti, F. (2004) Germinação: Do Básico ao Aplicado. Editora Artmed, Porto Alegre.

[19]   Mendes-Rodrigues, C., Oliveira, P.E. and Ranal, M.A. (2011) Seed Germination and Seedling Growth of two Pseudobombax species (Malvaceae) with Contrasting Habitats from Brazilian Cerrado. Revista de Biologia Tropical, 59, 1915-1925.

[20]   Primack, R.B. (1987) Relatioship among Flower, Fruits, and Seeds. Annual Review of Ecology and Systematics, 18, 409-430.

[21]   Agren, G.I. and Franklin, O. (2003) Root: Shoot Ratios, Optimization and Nitrogen Productivity. Annals of Botany, 92, 795-800.

[22]   Yang, Z. and Midmore, D.J. (2005) Modeling Plant Resource Allocation and Growth Partitioning in Responses to Environmental Heterogeneity. Ecological Modelling, 181, 59-77.

[23]   Leishman, M.R. (2001) Does the Seed Size/Number Trade-Off Model Determine Plant Community Structure: An Assessment of the Model Mechanisms and Their Generality. Oikos, 93, 294-302.

[24]   Rego, R.S., Silva, A.J.C., Brondani, G.E., Grisi, F.A., Nogueira, A.C. and Kuniyoshi, Y.S. (2007) Caracterização Morfológica do Fruto, Semente e Germinação de Duranta vestita Cham. (Verbenaceae). Revista Brasileira de Biociências, 5, 474-476.

[25]   Carvalho, P.E.R. (2003) Espécies Arbóreas Brasileiras. Embrapa Florestas, Colombo, Brasília.

[26]   Pedroni, F., Sanchez, M, and Santos, A.M. (2002) Fenólogia da Copaíba (Copaifera langsdorffii Desf.—Leguminosae, Caesalpinioideae) em Uma Floresta Semidecídua no Sudeste do Brasil. Revista Brasileira de Botânica, 25, 183-194.

[27]   Fagundes, M., Maia M.L.B., Queiroz, A.C.M., Fernandes, G.W. and Costa F.V.(2013) Seed predation of Copaifera langsdorffii Desf. (Fabaceae: Caesalpinioideae) by Rhinochenus brevicollis Chevrolat (Coleoptera: Curculionidae) in a Cerrado Fragment. Ecología Austral, 23, 218-221.

[28]   Costa, F.V., Siqueira, F.N., Oliveira, J.S. and Fagundes, M. (2011) Relationship between Plant Development, Tannin Concentration and Insects Associated with Copaifera langsdorffii (Fabaceae). Arthropod-Plant Interactions, 5, 9-18.

[29]   Baskin, J.M. and Baskin, C.C. (2004) A Classification System for Seed Dormancy. Seed Science Research, 14, 1-16.

[30]   R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

[31]   Crawley, M.J. (2007) The R Book. John Wiley and Sons, New York.

[32]   Walters, C. (1998) Understanding the Mechanisms and Kinetics of Seed Aging. Seed Science Research, 8, 223-244.

[33]   Debeaujon, I., Léon-Kloosterziel, K.M. and Koornneef, M. (2000) Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology, 122, 403-414.

[34]   Gharoobi, B. (2011) Effects of Seed Size on Seedlings Characteristics of Five Barley Cultivars. Iranian Journal of Plant Physiology, 1, 265-270.

[35]   Beninger, C.W., Hosfield, G.L. and Nair, M.G. (1998) Physical Characteristics of Dry Beans in Relation to Seed Coat Color Genotype. HortScience, 33, 328-329.

[36]   Fowler, A.J.P. and Bianchetti, A. (2000) Dormência em sementes florestais. Embrapa Florestas, Colombo, Paraná.

[37]   Dolan, R.W. (1984) The Effect of Seed Size and Maternal Source on Individual Size in a Population of Ludwigia leptocarpa (Onagraceae). American Journal of Botany, 71, 1302-1307.

[38]   Dan, E.L., Mello, V.D.C., Wetzel, C.T., Popinigis, F. and Zonta, E.P. (1987) Transferência de Matéria seca Como Método de Avaliação do Vigor de Sementes de Soja. Revista Brasileira de Sementes, 9, 45-55.

[39]   Westoby, M., Leishman, M., Lord, J., Porter, H. and Schoen, D.J. (1996) Comparative Ecology of Seed Size and Dispersal. Philosophical Transactions of the Royal Society B, 351, 1309-1318.

[40]   Gross, K.L. (1984) Effects of Seed Size and Growth Form on Seedling Establishment of Six Monocarpic Perennial Plants. Journal of Ecology, 72, 369-387.

[41]   Foster, S.A. (1986) On the Adaptive Value of Large Seeds for Tropical Moist Forest Trees: A Review and Synthesis. Botanical Review, 52, 260-299.

[42]   Souza, M.L. and Fagundes, M. (2014) Predispersal Seed Predation of Copaifera langsdorffii (Fabaceae): A Tropical Tree with Supra-Annual Mass Fruiting in Brazilian Cerrado. Arthropod-Plant Interactions.

[43]   Canadell, J. and Zedler, P.H. (1995) Underground Structures of Woody Plants in Mediterranean Ecosystems of Australia, California and Chile. Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia. Springer-Verlag, New York.

[44]   Rees, M. and Westoby, M. (1997) Game-Theoretical Evolution of Seed Mass in Multi-Species Ecological Models. Oikos, 78, 116-126.

[45]   Harper, J.L., Lovell, P.H. and Moore, K.G. (1970) The Shapes and Size of Seeds. Annual Review of Ecology and Systematics, 1, 327-356.

[46]   Bu, H.Y., Du, G.Z., Chen, X.L., Wang, Y., Xu, X.L. and Liu, K. (2009) The Evolutionary Significance of Seed Germinability in an Alpine Meadow on the Eastern Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research, 41, 97-102.