[1] Bruckard, W.J., Sparrow, G.J. and Woodcock, J.T. (2011) A Review of the Effects of the Grinding Environment on the Flotation of Copper Sulphides. International Journal of Mineral Processing, 100, 1-13.
http://dx.doi.org/10.1016/j.minpro.2011.04.001
[2] Peng, Y.J. and Grano, S. (2010) Effect of Iron Contamination from Grinding Media on the Flotation of Sulphide Minerals of Different Particle Size. International Journal of Mineral Processing, 97, 1-6.
http://dx.doi.org/10.1016/j.minpro.2010.07.003
[3] Eslami Andargoli, M.B., Jannesar Malakooti, S., Doulati Ardejani, F. and Abdollahi, H. (2012) Effect of Galvanic Contact on the Flotability of Galena in the Presence and Absence of a Collector. International Journal of Mining Science and Technology, 22, 629-632. http://dx.doi.org/10.1016/j.ijmst.2012.08.006
[4] Subrahmanyam, T.V. and Forssberg, K.S.E. (1993) Mineral Solution-Interface Chemistry in Minerals Engineering. Minerals Engineering, 6, 439-454. http://dx.doi.org/10.1016/0892-6875(93)90173-K
[5] Cullinan, V.J., Grano, S.R., Greet, C.J., Johnson, N.W. and Ralston, J. (1999) Investigating Fine Galena Recovery Problems in the Lead Circuit of Mount Isa Mines Lead/Zinc Concentrator: Part 1. Grinding Media Effects. Minerals Engineering, 12, 147-163. http://dx.doi.org/10.1016/S0892-6875(98)00128-9
[6] Forssberg, E., Sundberg, S. and Hongxin, Z. (1988) Influence of Different Grinding Methods on Floatability. International Journal of Mineral Processing, 22, 183-192. http://dx.doi.org/10.1016/0301-7516(88)90063-4
[7] Peng, Y., Grano, S., Fornasiero, D. and Ralston, J. (2003) Control of Grinding Conditions in the Flotation of Galena and Its Separation from Pyrite. International Journal of Mineral Processing, 70, 67-82.
http://dx.doi.org/10.1016/S0301-7516(02)00153-9
[8] Peng, Y., Grano, S., Fornasiero, D. and Ralston, J. (2003) Control of Grinding Conditions in the Flotation of Chalcopyrite and Its Separation From Pyrite. International Journal of Mineral Processing, 69, 87-100.
http://dx.doi.org/10.1016/S0301-7516(02)00119-9
[9] Peng, Y.J. and Grano, S. (2010) Inferring the Distribution of Iron Oxidation Species on Mineral Surfaces during Grinding of Base Metal Sulphides. Electrochimical, 55, 5470-5477.
http://dx.doi.org/10.1016/j.electacta.2010.04.097
[10] Grano, S. (2009) The Critical Importance of the Grinding Environment on Fine Particle Recovery in Flotation. Minerals Engineering, 22, 386-394. http://dx.doi.org/10.1016/j.mineng.2008.10.008
[11] Martin, C.J., McIvor, R.E., Finch, J.A. and Rao, S.R. (1990) Effect of Grinding Media on Flotation of Sulphide Minerals. Minerals Engineering, 4, 121-132. http://dx.doi.org/10.1016/0892-6875(91)90028-T
[12] Adam, K. and Iwasaki, I. (1984) Pyrrhotite Grinding Media Interactions and Its Effect on Floatability at Different Applied Potentials. AIME Transactions, 276, 7.
[13] Kocabag, D. and Smith, M.R. (1982) The Effect of Grinding Media and Galvanic Interaction upon the Flotation of Sulphide Minerals. In: Zunkel, A.D., Boorman, R.S., Morris, A.E. and Wesley, R.J., Eds., Complex Sulphides, Processing of Ores, Concentrates and By-Products, The Metallurgical Society, Inc., 55-81.
[14] Guy, P.J. and Trahar, W.J. (1984) The Influence of Grinding and Flotation Environments on the Laboratory Batch Flotation of Galena. International Journal of Mineral Processing, 12, 15.
http://dx.doi.org/10.1016/0301-7516(84)90020-6
[15] Learmont, M.E. and Iwasaki, I. (1984) Effect of Grinding Media on Galena Flotation. AIME Transactions, 276, 9.
[16] Rey, M. and Formanek, V. (1960) Some Factors Affecting Selectivity in the Differentia Flotation of Lead-Zinc Ores, Particularly in the Presence of Oxidized Lead Minerals. Proceedings of the 5th International Mineral Processing Congress, London, 343.
[17] Thornton, E. (1973) The Effect of Grinding Media on Flotation Selectivity. Canadian Mineral Processors Annual General Meeting, 223.
[18] Cases, J.M., De Donato, P., Kongolo, M. and Michot, L. (1989) The Influence of Grinding Media on the Adsorption and Abstraction of Potassium Amyl Xanthate on Finely Ground Galena and Pyrite. SME Preprint 89-62, SME, Littleton.
[19] Tolun, R. and Kitchener, J.A. (1964) Electrochemical Study of Galena-Xanthate-Oxygen Flotation System. Trans LM.M., 73, 313.
[20] Toperi, R. and Tolun, R. (1969) Electrochemical Study and Thermo-Dynamic Equilibria of the Galena-XanthateOxygen Flotation System. Trans I.M.M., 78, C191.
[21] Petruk, W. and Hughson, M.R. (1977) Image Analysis Evaluation of the Effect of Grinding Media on the Selective Flotation of Two Lead-Zinc-Copper. CIM Bulletin, 128.
[22] Lynch, A.J., Johnson, N.W., Manlapig, E.V. and Thorne, C.G. (1981) Mathematical Models of Flotation. Mineral and Coal Flotation Circuits, Their Simulation and Control, Developments in Mineral Processing. Elsevier, Amsterdam, 57-96.
[23] Smart, R.St.C. (1991) Surface Layers in Base Metal Sulphide Flotation. Minerals Engineering, 4, 891-909.
http://dx.doi.org/10.1016/0892-6875(91)90072-4
[24] Allen, G.C., Curtis, M.T., Hooper, A.J. and Tucker, P.M. (1974) X-Ray Photoelectron Spectroscopy of Iron-Oxygen Systems. Journal of the Chemical Society, Dalton Transactions, 14, 1525-1530.
http://dx.doi.org/10.1039/dt9740001525
[25] Buckley, A.N. and Woods, R. (1984) An X-Ray Photoelectron Spectroscopic Study of the Oxidation of Chalcopyrite. Australian Journal of Chemistry, 37, 2403-2413. http://dx.doi.org/10.1071/CH9842403
[26] Fornasiero, D., Li, F., Ralston, J. and Smart, R.St.C. (1994) Oxidation of Galena Surfaces: I. X-Ray Photoelectron Spectroscopic and Dissolution Kinetics Studies. Journal of Colloid and Interface Science, 164, 333-344.
http://dx.doi.org/10.1006/jcis.1994.1175