Evolution of Weak Shock Waves in Perfectly Conducting Gases

References

[1] G. B. Whitham, “Linear and Nonlinear Waves,” Wiley- Interscience, New York, 1974.

[2] J. D. Achenbach, “Wave Propagation in Elastic Solids,” North-Holland American Elsevier, Amsterdam, 1973.

[3] P. J. Chen, “Selected Topics in Wave Propagation,” Noordhoff, Leyden, 1976.

[4] A. Jeffrey, “Quasilinear Hyperbolic System and Waves,” Pitman, London, 1976.

[5] M. F. McCarthy, “Singular Surfaces and Waves,” In: A. C. Eringen, Ed., Continuum Physics, Vol. 2, Academic Press, London, 1975, pp. 449-521.

[6] C. Truesdell and K. R. Rajagopal, “An Introduction to the Mechanics of Fluids,” Birkh?use, Boston, 2000. doi:10.1007/978-0-8176-4846-6

[7] T. Y. Thomas, “The Growth and Decay of Sonic Discontinuities in Ideal Gases,” Journal of Mathematics and Mechanics, Vol. 6, No. 3, 1957, pp. 455-469.

[8] B. D. Coleman and M. E. Gurtin, “Growth and Decay of Discontinuities in Fluids with Internal State Variables,” Physics of Fluids, Vol. 10, No. 7, 1967, pp. 1454-1458. doi:10.1063/1.1762305

[9] V. V. Menon, V. D. Sharma and A. Jeffrey, “On the General Behavior of Acceleration Waves,” Applicable Analysis, Vol. 16, No. 2, 1983, pp. 101-120. doi:10.1080/00036818308839462

[10] H. Lin and A. J. Szeri, “Shock Formation in the Presence of Entropy Gradient,” Journal of Fluid Mechanics, Vol. 431, No. 1, 2001, pp. 161-188. doi:10.1017/S0022112000003104

[11] P. M. Jordan, “Growth and Decay of Shock and Acceleration Waves in a Traffic Flow Model with Relaxation,” Physica D: Nonlinear Phenomena, Vol. 207, No. 3-4, 2005, pp. 220-229. doi:10.1016/j.physd.2005.06.002

[12] D. Bhardwaj, “Formation of Shock Waves in Reactive Magnetogas Dynamic Flow,” International Journal of Engineering Science, Vol. 38, No. 11, 2000, pp. 1197-1206. doi:10.1016/S0020-7225(99)00071-3

[13] M. Tyagi and R. I. Sujith, “The Propagation of Finite Amplitude Gasdynamic Disturbances in a Stratified Atmosphere around a Celestial Body: An Analytical Study,” Physica D: Nonlinear Phenomena, Vol. 211, No. 1-2, 2005, pp. 139-150. doi:10.1016/j.physd.2005.08.006

[14] I. Christov, P. M. Jordan and C. I. Christov, “Nonlinear Acoustic Propagation in Homentropic Perfect Gases: A Numerical Study,” Physics Letters A, Vol. 353, No. 4, 2006, pp. 273-280. doi:10.1016/j.physleta.2005.12.101

[15] T. R. Sekhar and V. D. Sharma, “Evolution of Weak Dis- continuities in Shallow Water Equations,” Applied Mathematics Letters, Vol. 23, No. 3, 2010, pp. 327-330. doi:10.1016/j.aml.2009.10.003

[16] V. P. Maslov, “Propagation of Shock Waves in an Isentropic Non-Viscous Gas,” Journal of Mathematical Sci- ences, Vol. 13, No. 1, 1980, pp. 119-163.
doi:10.1007/BF01084111

[17] M. A. Grinfel’d, “Ray Method for Calculating the Wavefront Intensity in Non-Linear Elastic Material,” Journal of Applied Mathematics and Mechanics, Vol. 42, No. 5, 1978, pp. 958-977.

[18] A. M. Anile, “Propagation of Weak Shock Waves,” Wave Motion, Vol. 6, No. 6, 1984, pp. 571-578.
doi:10.1016/0165-2125(84)90047-7

[19] G. Russo, “Generalized Wavefront Expansion: Properties and Limitations,” Meccanica, Vol. 21, No. 4, 1986, pp. 191-199. doi:10.1007/BF01556485

[20] A. M. Anile and G. Russo, “Generalized Wavefront Expansion I: Higher Order Corrections for the Propagation of Weak Shock Waves,” Wave Motion, Vol. 8, No. 3, 1986, pp. 243-258. doi:10.1016/S0165-2125(86)80047-6

[21] G. Madhumita and V. D. Sharma, “Imploding Cylindrical and Spherical Shock Waves in a Non-Ideal Medium,” Journal of Hyperbolic Differential Equations, Vol. 1, No. 3, 2004, pp. 521-530. doi:10.1142/S0219891604000184

[22] V. D. Sharma, L. P. Singh and R. Ram, “The Progressive Wave Approach Analyzing the Decay of a Sawtooth Profile in Magnetogasdynamics,” Physics of Fluids, Vol. 30, No. 5, 1987, pp. 1572-1574. doi:10.1063/1.866222

[23] S. Muralidharan and R. I. Sujith, “Shock Formation in the Presence of Entropy Gradients in Fluids Exhibiting Mixed Nonlinearity,” Physics of Fluids, Vol. 6, No. 11, 2004, pp. 4121-4128. doi:10.1063/1.1795272

[24] R. Courant and K. O. Friedrichs, “Supersonic Flow and Shock Waves,” Interscience Inc, New York, 1948.

[25] L. D. Landau, “On Shock Waves at Large Distances from the Place of Their Origin,” Soviet Physics Journal, Vol. 9, 1945, pp. 496-500.