Generalized Thermo Elasticity in an Infinite Nonhomogeneous Solid Having a Spherical Cavity Using DPL Model

References

[1] M. A. Biot, “Thermoelasticity and Irreversible Thermodynamics,” Journal of Applied Physics, Vol. 27, No. 3, 1956, pp. 240-253. doi:10.1063/1.1722351

[2] H. Lord and Y. Shulman, “A Generalized Dynamical Theory of Thermoelasticity,” Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, 1967, pp. 299-309. doi:10.1016/0022-5096(67)90024-5

[3] A. E. Green and K. A. Lindsay, “Thermoelasticity,” Journal of Elasticity, Vol. 2, No. 1, 1972, pp. 1-7. doi:10.1007/BF00045689

[4] A. E. Green and P. M. Naghdi, “Thermoelasticity Without Energy Dissipation,” Journal of Elasticity, Vol. 31, No. 3, 1993, pp. 189-208. doi:10.1007/BF00044969

[5] D. Y. Tzou, “Macro- to Microscale Heat Transfer: the Lagging Behavior,” 1st Edition, Taylor & Francis, Washington, 1996.

[6] D. Y. Tzou, “A Unified Approach for Heat Conduction from Macro- to Microscales,” Journal of Heat Transfer, Vol. 117, No. 1, 1995, pp. 8-16. doi:10.1115/1.2822329

[7] D. Y. Tzou, “Experimental Support for the Lagging Behavior in Heat Propagation,” Journal of Thermophysics and Heat Transfer, Vol. 9, No. 4, 1995, pp. 686-693. doi:10.2514/3.725

[8] D. S. Chandrasekharaiah, “Thermoelasticity with Second Sound,” Applied Mechanics Reviews, Vol. 39, No. 3, 1986, pp. 354-376.

[9] G. Honig and V. Hirdes, “A Method for the Numerical Inversion of the Laplace Transform,” Journal of Computational and Applied Mathematics, Vol. 10, No. 1, 1984, pp. 113-132. doi:10.1016/0377-0427(84)90075-X

[10] S. B. Sinha and K. A. Elsibai, “Thermal Stresses for an Infinite Body with Spherical Cavity with Tow Relaxation Times,” Journal of Thermal Stresses, Vol. 19, No. 5, 1996, pp. 745-759. doi:10.1080/01495739608946190

[11] M. N. Allam, K. A. Elsibai and A. E. Abouelergal, “Thermal Stresses in a Harmonic Field for an Infinite Body with a Circular Cylindrical Hole Without Energy Dissipation,” Journal of Thermal Stresses, Vol. 25, No. 1, 2002, pp. 57-68. doi:10.1080/014957302753305871

[12] S. Mukhopadhyay, “Thermoelastic Interactions without Energy Dissipation in an Unbounded Body with a Spherical Cavity Subjected to Harmonically Varying Temperature,” Mechanics Research Communications, Vol. 31, No. 1, 2004, pp. 81-89. doi:10.1016/S0093-6413(03)00082-X

[13] S. Mukhopadhyay and R. Kumar, “A Study of Generalized Thermoelastic Interactions in an Unbounded Medium with a Spherical Cavity,” Computers and Mathematics with Applications, Vol. 56, No. 9, 2008, pp. 2329- 2339.doi:10.1016/j.camwa.2008.05.031

[14] S. K. Roychoudhuri, “One-Dimensional Thermoelastic Waves in Elastic Half-Space with Dual-Phase-Lag Effects,” Materials and Structures Journal, Vol. 2, No. 1, 2007, pp. 489-503. doi:10.2140/jomms.2007.2.489

[15] S. Suresh and A. Mortensen, “Fundamentals of Functionally Graded Materials,” Institute of Materials Communications Ltd., London, 1998.

[16] R. C. Wetherhold and S. S. Wang, “The Use of Functionally Graded Materials to Eliminate or Control Thermal Deformation,” Composites Science and Technology, Vol. 56, No. 9, 1996, pp. 1099-1104. doi:10.1016/0266-3538(96)00075-9

[17] R. B. Hetnarski and J. Ignaczak, “Generalized Thermoelasticity,” Journal of Thermal Stresses, Vol. 22, No. 4, 1999, pp. 451-476. doi:10.1080/014957399280832