Graphene  Vol.3 No.3 , July 2014
Transferring Few-Layer Graphene Sheets on Hexagonal Boron Nitride Substrates for Fabrication of Graphene Devices

We have developed a dry transfer method that allows graphene to be transferred from polymer- thyl-methacrylate (PMMA)/Si (silicon) substrates on commercially available hexagonal boron ni- tride (hBN) crystals. With this method we are able to fabricate graphene devices with little wrin- kles and bubbles in graphene sheets, but that do not degrade the electronic quality more than the SiO2 substrate does. For hBN to perform the function described above substrate cleanliness is critical to get high quality graphene devices. Using hBN as a substrate, graphene exhibits enhanced mobility, reduced carrier inhomogeneity, and reduced intrinsic doping compared to graphene on SiO2 substrate.

Cite this paper
Leon, J. , Mamani, N. , Rahim, A. , Gomez, L. , Silva, M. , Gusev, G. (2014) Transferring Few-Layer Graphene Sheets on Hexagonal Boron Nitride Substrates for Fabrication of Graphene Devices. Graphene, 3, 25-35. doi: 10.4236/graphene.2014.33005.
[1]   Novosolev, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A. (2004) Electrical Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.

[2]   Ando, T. (2006) Screening Effect and Impurity Scattering in Monolayer Graphene. Journal of Physics Society of Japan, 75, Article ID: 074716.

[3]   Ishigami, M., Chen, J.H., Cullen, W.G., Fuhrer, M.S. and Williams, E.D. (2007) Atomic Structure of Graphene on SiO2. Nano Letters, 7, 1643-1648.

[4]   Chen, J.H., Jang, C., Xiao, S., Ishigami, M. and Fuhrer, M.S. (2008) Intrinsic and Extrinsic Performance of Graphene Devices on SiO2. Nature Nanotechnology, 3, 206-209.

[5]   Deshpande, A., Bao, W., Miao, M., Lau, C.N. and LeRoy, B.J. (2009) Spatially Resolved Spectroscopy of Monolayer Graphene on SiO2. Physics Review B, 79, Article ID: 205411.

[6]   Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stomer, H.L. (2008) Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146, 351-355.

[7]   Trombos, N., Veligura, A., Junesch, J. and Berg, J.J.V.D. (2011) Large Yield Production of High Mobility Freely Sus- pended Graphene Electronic Devices on a Polydimethylglutaramide Based Organic Polymer. Journal of Applied Phy- sics, 109, Article ID: 093702.

[8]   Bao, W., Miao, F., Chen, Z., Zheng, H., Jang, W., Dames, C. and Lau, C.N. (2009) Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes. Nature Nanotechnology, 4, 562-566.

[9]   Zhang, Y., Tan, Y.-W., Stomer, H.L. and Kim, P. (2005) Experimental Observation of the Quantum Hall Effect and Berry’s in Graphene. Nature, 438, 201-204.

[10]   Novoselov, K.S., McCann, E., Morosov, S.V., Fal’ko, V.I., Katsnelson, M.I., Zeitler, U., Jian, D., Schedin, F. and Geim, A.K. (2006) Unconventional Quantum Hall Effect and Berry’s Phase of 2π in Bilayer Graphene. Nature Phy- sics, 2, 177-180.

[11]   Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L. and Hones, J. (2010) Boron Nitride Substrates for High-quality Graphene Electronics. Nature Nanotechnology, 5, 722-726.

[12]   Zomer, P., Dash, S.P., Tombros, N. and van Wees, B.J. (2011) A Transfer Technique for High Mobility Graphene on Commercially Available Hexagonal Boron Nitride. Applied Physics Letters, 99, Article ID: 232104.

[13]   Xue, J., Sanchez-Yamagishi, J., Bulmash, D., Jacquod, P., Deshpande, A., Watanabe, K., Tanigushi, T., Jarillo-Herrero, P. and LeRoy, B.J. (2011) Scanning Tunnelling Microscopy and Spectroscopy Ultra-Flat Graphene on Hexagonal Bo- ron Nitride. Nature Materials, 10, 282-285.

[14]   Dean, C.R., Young, A.F., Cadden-Zimansky, P., Wang, L., Ren, H., Watanabe, K., Tanigushi, T., Kim, P., Hone, J. and Shepard, K.L. (2011) Multicomponent Fractional Quantum Hall Effect in Graphene. Nature Physics, 7, 1-4.

[15]   Amet, F., Williams, J.R., Watanabe, K., Taniguchi, T. and Goldhaber-Gordon, D. (2011) Insulator Behavior at the Charge Neutrality Point in Single-Layer Graphene. Physics Review Letters, 110, Article ID: 216601.

[16]   Taychatanapat, T., Watanabe, K., Taniguchi, T. and Jarillo-Herrero, P. (2011) Quantum Hall Effect and Landau-Level Crossing of Dirac Fermions in Trilayer Graphene. Nature Physics, 7, 621-625.

[17]   Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S. Watanabe, K., Tanigushi, T. and Geim, A.K. (2011) Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Letters, 11, 2396-2399.

[18]   Garcia, A.G.F., Neumann, M., Amet, F., Williams, J.R., Watanabe, K., Taniguchi, T. and Goldhaber-Gordon, D. (2012) Effective Cleaning of hexagonal Boron Nitride for Graphene Devices. Nano Letters, 12, 4449-4454.

[19]   Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J. and Geim, A.K. (2007) Making Graphene Visible. Applied Physics Letters, 91, Article ID: 063124.

[20]   Jungen, A., Popov, V.N., Stampfer, C., Durrer, L., Stoll, S. and Hierold, C. (2007) Raman Intensity Mapping of Sin- gled-Walled Carbon Nanotubes. Physics Review B, 75, Article ID: 041405(R).

[21]   Stolyarova, E., Stolyarov, D., Bolotin, K., Ryu, S., Liu, L., Rim, K.T., Klima, M., Hybertsen, M., Pogorelsky, I., Pavlishin, I. Kusche, K. Hone, J., Kim, P., Stomer, H.L., Yakimenko, V. and Flynn, G. (2009) Observation of Graphene Bubbles and Effective Mass Transport under Graphene Films. Nano Letters, 9, 332-337.

[22]   Haigh, S.J., Gholinia, A., Jalil, R., Romani, S., Britnell, S., Elias, D.C., Novoselov, K.S., Ponomarenko, L.A., Geim, A.K. and Gorbachev, R.V. (2012) Cross-Sectional Imaging of Individual Layer and Buried Interfaces of Graphene- Based Heterostructures and Superlattices. Nature Materials, 11, 764-767.

[23]   Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.

[24]   Pan, W., Xiao, J., Zhu, J., Yu, C., Zhang, G., Ni, Z., Watanabe, K., Taniguchi, T., Shi, Y. and Wang, X. (2012) Biaxial Compressive Strain in Graphene/Boron Nitride Heterostructures. Scientific Reports, 2, Article Number: 893.

[25]   Geick, R., Perry, C. and Rupprecht, G. (2006) Normal Modes in Hexagonal Boron Nitride. Physics Review, 146, 543.

[26]   Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. and Wirtz, L. (2007) Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Letters, 7, 238-242.

[27]   Yan, J., Zhan, Y., Kim, P. and Pinczuk, A. (2007) Electrical Field Effect Tuning of Electron-Phonon Coupling in Gra- phene. Physics Review Letters, 98, Article ID: 166802.

[28]   Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Shedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morosov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S. and Ponomarenko, L.A. (2012) Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 335, 947-950.

[29]   Kumar, A., Escoffier, W., Poumirol, J.M., Fangeras, C., Arovas, D.P., Fogler, M.M., Guinea, F., Roche, S., Goiran, M. and Raquet, B. (2011) Integer Quantum Hall Effect in Trilayer Graphene. Physics Review Letters, 107, Article ID: 126806.

[30]   Zhu, W., Perebeinos, V., Freitag, M. and Avouris, P. (2009) Carrier Scattering, Mobilities, and Electrostatic Potential in Monolayer, Bilayer, and Trilayer Graphene. Physics Review B, 80, Article ID: 235402.