AM  Vol.2 No.5 , May 2011
Two Theorems about Nilpotent Subgroup
Author(s) Lijiang Zeng
ABSTRACT
In the paper, we introduce some concepts and notations of Hall π-subgroup etc, and prove some properties about finite p-group, nilpotent group and Sylow p-subgroup. Finally, we have proved two interesting theorems about nilpotent subgroup.

Cite this paper
nullL. Zeng, "Two Theorems about Nilpotent Subgroup," Applied Mathematics, Vol. 2 No. 5, 2011, pp. 562-564. doi: 10.4236/am.2011.25074.
References
[1]   M. Osima, “On the Induced Characters of a Group,” Proceedings of the Japan Academy, Vol. 28, No. 5, 1952, pp. 243-248. doi:10.3792/pja/1195570968

[2]   J. D. Dixou, “The Structure of Linear Groups,” Van Nostrand Reinhold, New York, 1971, pp. 189-201.

[3]   M. Aschbacher, “Finite Group Theory,” Cambridge University Press, New York, 1986, pp. 174-188.

[4]   C. W. Curtis and I. Reiner, “Methods of Representation Theory,” Wiley, New York, 1981, pp. 177-184.

[5]   J. E. Roseblade, “A Note on Subnormal Coalition Cla- sses,” Mathematische Zeitschrift, Vol. 90, No. 5, 1965, pp. 373-375. doi:10.1007/BF01112356

[6]   C. F. Miller III, “On Group Theoretic Decision Problems and Their Classification,” Annals of Mathematics Studies, No. 68, Princeton University Press, Princeton, 1971, pp. 112-134.

[7]   M. F. Newman, “The Soluble Length of Soluble Linear Groups,” Mathematische Zeitschrift, Vol. 126, No.1, 1972, pp. 59-70. doi:10.1007/BF01580356

[8]   B. Li and A. Skiba, “New Characterizations of Finite Supersoluble Groups,” Science in China Series A: Mathe- matics, Vol. 51, No. 5, 2008, pp. 827- 841.

[9]   W. Guo and A. Skiba, “X-Permutable Maximal Subgroups of Sylow Subgroups of Finite Groups,” Ukrainian Mathematical Journal, Vol. 58, No. 10, 2006, pp. 1299- 1309.

[10]   W. Guo, K. Shum and A. Skiba, “X-Semipermutable Subgroups of Finite Groups,” Journal of Algebra, Vol. 315, No. 1, 2007, pp. 31-41. doi:10.1016/j.jalgebra.2007.06.002

 
 
Top