JMP  Vol.5 No.12 , July 2014
Analysis of the Metric in Quasicrystals—Linear Response in Logarithmically Periodic Solids

The metric, that enables measurement of structural data from diffraction in quasicrystals, is analyzed. A modified compromise spacing effect is the consequence of scattering of periodic electromagnetic or electron waves by atoms arranged on a geometric grid in an ideal hierarchic structure. This structure is infinitely extensive, uniquely aligned and uniquely icosahedral. The approximate analytic factor that converts the geometric terms base τ, into periodic terms modulo 2π, is . It matches the simulated metric cs=0.947, consistently used in second (Bragg) order, over a wide scale from atomic dimensions to sixth order superclusters.

Cite this paper
Bourdillon, A. (2014) Analysis of the Metric in Quasicrystals—Linear Response in Logarithmically Periodic Solids. Journal of Modern Physics, 5, 1079-1084. doi: 10.4236/jmp.2014.512109.
[1]   Bourdillon, A.J. (2014) Journal of Modern Physics, 5 488-496.

[2]   Bourdillon, A. J. (2009) Solid State Communications, 149, 1221-1225.

[3]   Bourdillon, A.J. (2013) Micron, 51, 21-25.

[4]   Bourdillon, A.J. (2011) Logarithmically Periodic Solids. Nova Science, New York.

[5]   Bourdillon, A.J. (2012) Metric, Myth and Quasicrystals. UHRL, San Jose.

[6]   Bourdillon, A.J. (2009) Quasicrystals and Quasi Drivers. UHRL, San Jose.

[7]   Bourdillon, A.J. (2010) Quasicrystals’ 2D Tiles in 3D Superclusters. UHRL, San Jose.

[8]   Steurer, W. (2004) Zeitschrift für Kristallographie, 219, 391-446.

[9]   Steurer, W. and Deloudi, S. (2008) ActaCrystallographica, A64, 1-11.

[10]   Shechtman, D., Blech, I., Gratias, D. and Cahn, J.W. (1984) Physical Review Letters, 53, 1951-1953.

[11]   Cullity, B.D. (1978) Elements of X-Ray Diffraction. 2nd Edition, Addison-Wesley, Addison.

[12]   Hirsch, P., Howie, A., Nicholson, R.B., Pashley, D.W. and Whelan, M.J. (1977) Electron Microscopy of Thin Crystals. Krieger.