Solving Large Scale Unconstrained Minimization Problems by a New ODE Numerical Integration Method

References

[1] T. M. Han and Y. H. Han, “Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method,” Applied Mathematics, Vol. 1, No. 3, 2010, pp. 222-229. doi: 10.4236/am.2010.13027

[2] P. Deuflhard, “Newton Methods for Nonlinear Problems Affine Invariance and Adaptive Algorithms,” Springer- Verlag, Berlin, 2004.

[3] D. J. Higham, “Trust Region Algorithms and Timestep Selection,” SIAM Journal on Numerical Analysis, Vol. 37, No. 1, 1999, pp. 194-210. doi:10.1137/S0036142998335972

[4] D. M. Young, “Convergence Properties of the Symmetric and Unsymmetric Successive Overrelaxation Methods and Related Methods,” Mathematics of Computation, Vol. 24, No. 112, 1970, pp. 793-807. doi:10.1090/S0025-5718-1970-0281331-4

[5] Y. Saad, “Iterative Methods for Sparse Linear Systems,” PWS Publishing Company, Boston, 1996.

[6] A. Miele and J. W. Cantrell, “Study on a Memory Gradient Method for the Minimization of Functions,” Journal of Optimization Theory and Applications, Vol. 3, No. 6, 1969, pp. 459-470. doi:10.1007/BF00929359

[7] A. R. Conn, N. I. M. Gould and P. L. Toint, “Testing a Class of Methods for Solving Minimization Problems with Simple Bounds on the Variables,” Mathematics of Computation, Vol. 50, No. 182, 1988, pp. 399-430. doi:10.1090/S0025-5718-1988-0929544-3

[8] M. A. Branch, T. F. Coleman and Y. Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM Journal on Scientific Computing, Vol. 21, No. 1,1999, pp. 1-23. doi:10.1137/S1064827595289108