[1] Study, E. (1903) Geometrie der Dynamen. Mathematiker Deutschland Publisher, Leibzig.
[2] Guggenheimer, H.W. (1963) Differential Geometry. McGraw-Hill, New York.
[3] Hacisalihoglu, H.H. (1972) On the Pitch of a Closed Ruled Surface. Mechanism and Machine Theory, 7, 291-305.
http://dx.doi.org/10.1016/0094-114X(72)90039-0
[4] Veldkamp, G.R. (1976) On the Use of Dual Number, Vector and Matrices in Instantaneous Spatial Kinematics. Mechanism and Machine Theory, 11, 141-156.
http://dx.doi.org/10.1016/0094-114X(76)90006-9
[5] Zha, X.F. (1997) A New Approach to Generation of Ruled Surfaces and Its Application in Engineering. The International Journal of Advanced Manufacturing Technology, 13, 155-163.
http://dx.doi.org/10.1007/BF01305867
[6] Ugurlu, H.H. and Caliskan, A. (1996) The Study Mapping for Directed Spacelike and Timelike Line in Minkowski 3-Space . Mathematical and Computational Applications, 1, 142-148.
[7] Yayli, Y., Caliskan, A. and Ugurlu, H.H. (2002) The E Study Maps of Circles on Dual Hyperbolic and Lorentzian Unit Spheres and . Mathematical Proceedings of the Royal Irish Academy, 102A, 37-47.
[8] Karger, A. and Novak, J. (1985) Space Kinematics and Lie Groups (Translated by Michal Basch). Gordon & Breach, New York.
[9] Yapar, Z. (1989) On the Curvature Motion. Communications, Faculty of Sciences, University of Ankara, Series A1, 38, 103-114.
[10] Ugurlu, H.H., Caliskan, A. and KiliC, O. (2001) On the Geometry of Spacelike Congruence. Communications Faculty of Sciences, University of Ankara, Series A1, 50, 9-24.
[11] Kazaz, M., Ozdemir, A. and Ugurlu, H.H. (2009) Elliptic Motion on Dual Hyperbolic Unit Sphere . Mechanism and Machine Theory, 44, 1450-1459.
http://dx.doi.org/10.1016/j.mechmachtheory.2008.11.006
[12] Caliskan, A., Ugurlu, H.H. and KiliC, O. (2003) On the Geometry of Timelike Congruence. Hadronic Journal Supplement, 18, 311-328.
[13] Akutagawa, K. and Nishikawa, S. (1990) The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space. Tohoku Mathematical Journal, 42, 67-82.
http://dx.doi.org/10.2748/tmj/1178227694
[14] Birman, G.S. and Nomizu, K. (1984) Trigonometry in Lorentzian Geometry. American Mathematical Monthly, 91, 543-549. http://dx.doi.org/10.2307/2323737
[15] O’Neil, B. (1983) Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London.
[16] Yaglom, I.M. (1979) A Simple Non-Euclidean Geometry and Its Physical Basis. Springer-Verlag, New York.