OJGen  Vol.4 No.4 , July 2014
Development of Fifteen Novel Microsatellite Markers from Rock Bream (Oplegnathus fasciatus)
ABSTRACT

Rock bream (Oplegnathus fasciatus) is one of the most economically valuable fish in Korea. In recent years, artificial breeding techniques with molecular and microsatellite markers have been developed to enhance rock bream resources. Microsatellite loci to define genetic diversity were screened in rock bream (n = 30) from Jeju areas of Korea and fifteen polymorphic microsatellite loci were newly identified and analyzed. The number of alleles per locus ranged from 9 to 34 while observed and expected heterozygosity ranged from 0.600 to 1.000 and from 0.772 to 0.977, respectively. These markers will serve as a foundation for future population genetic studies and the selective breeding technology of rock bream farming.


Cite this paper
Kim, J. , Kim, W. and Oh, M. (2014) Development of Fifteen Novel Microsatellite Markers from Rock Bream (Oplegnathus fasciatus). Open Journal of Genetics, 4, 287-291. doi: 10.4236/ojgen.2014.44026.
References
[1]   An, H.S., Kim, M.J. and Hong, S.W. (2008) Genetic Diversity of Rock Bream Oplegnathus fasciatus in Southern Korea. Genes & Genomics, 30, 451-459.

[2]   Xu, T.J., Shao, C.W., Liao, X.L., Ji, X.S. and Chen, S.L. (2009) Isolation and Characterization of Polymorphic Microsatellite DNA Markers in the Rock Bream (Oplegnathus fasciatus). Conservation Genetics, 10, 527-529.
http://dx.doi.org/10.1007/s10592-008-9557-6

[3]   An, H.S., Kim, J.W. and Park, J.Y. (2006) Microsatellite DNA Loci in the Rock Bream Oplegnathus fasciatus. Molecular Ecology Resources, 6, 44-46.
http://dx.doi.org/10.1111/j.1471-8286.2005.01129.x

[4]   Lundrigan, T.A., Reist, J.D. and Ferguson, M.M. (2004) Microsatellite Genetic Variation within and among Arctic charr (Salvelinus alpinus) from Aquaculture and Natural Populations in North America. Aquaculture, 244, 63-75.
http://dx.doi.org/10.1016/j.aquaculture.2004.11.027

[5]   Liu, Y., Chen, S. and Li, B. (2005) Assessing the Genetic Structure of Three Japanese Flounder (Paralichthys olivaceus) Stocks by Microsatellite Markers. Aquaculture, 243, 103-111.
http://dx.doi.org/10.1016/j.aquaculture.2004.10.024

[6]   Verspoor, E. (1988) Reduced Genetic Variability in First-Generation Hatchery Populations of Atlantic Salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 45, 1686-1690.
http://dx.doi.org/10.1139/f88-199

[7]   Norris, A.T., Bradley, D.G. and Cunningham, E.P. (1999) Microsatellite Genetic Variation between and within Farmed and Wild Atlantic Salmon (Salmo salar) Populations. Aquaculture, 180, 247-264.
http://dx.doi.org/10.1016/S0044-8486(99)00212-4

[8]   Frost, L.A., Evans, B.S. and Jerry, D.R. (2006) Loss of Genetic Diversity Due to Hatchery Culture Practices in Barramundi (Lates calcarifer). Aquaculture, 261, 1056-1064.
http://dx.doi.org/10.1016/j.aquaculture.2006.09.004

[9]   Hansen, M.M., Simonsen, V., Mensberg, K.L.D., Sarder, M.R.I. and Alam, M.S. (2006) Loss of Genetic Variation in Hatchery-Reared Indian Major Carp, Catlacatla. Journal of Fish Biology, 69, 229-241.
http://dx.doi.org/10.1111/j.1095-8649.2006.01285.x

[10]   Perez-Enriquez, R., Takagi, M. and Taniguchi, N. (1999) Genetic Variability and Pedigree Tracing of a Hatchery-Reared Stock of Red Sea Bream (Pagrus major) Used for Stock Enhancement, Based on Microsatellite DNA Markers. Aquaculture, 173, 413-423.
http://dx.doi.org/10.1016/S0044-8486(98)00469-4

[11]   Sekino, M., Hara, M. and Taniguchi, N. (2002) Loss of Microsatellite and Mitochondrial DNA Variation in Hatchery Strains of Japanese Flounder Paralichthys olivaceus. Aquaculture, 213, 101-122.
http://dx.doi.org/10.1016/S0044-8486(01)00885-7

[12]   An, H.S., Lee, J.W., Park, J.Y. and Jung, H.T. (2013) Genetic Structure of the Korean Black Scraper Thamnaconusmodestus Inferred from Microsatellite Marker Analysis. Molecular Biology Reports, 40, 3445-3456.
http://dx.doi.org/10.1007/s11033-012-2044-7

[13]   Liu, F., Sun, F., Li, J., Xia, J.H., Lin, G., Tu, R.J. and Yue, G.H. (2013) A Microsatellite-Based Linkage Map of Salt Tolerant Tilapia (Oreochromis mossambicus x Oreochromis spp.) and Mapping of Sex-Determining Loci. BMC genomics, 14, 58.
http://dx.doi.org/10.1186/1471-2164-14-58

[14]   McConnell, S., O’Reilly, P., Hamilton, L., Wight, J.M. and Bentzen, P. (1995) Polymorphic Microsatellite Loci from Atlantic Salmon (Salmo salar): Genetic Differentiation of North American and European Populations. Canadian Journal of Fisheries and Aquatic Sciences, 52, 1863-1872.
http://dx.doi.org/10.1139/f95-779

[15]   Jung, S.J. and Oh, M.J. (2000) Iridovirus-Like Infection Associated with High Mortalities of Striped Beakperch, Oplegnathus fasciatus (Temmincket Schlegel), in Southern Coastal Areas of the Korean Peninsula. Journal of Fish Diseases, 23, 223-226.
http://dx.doi.org/10.1046/j.1365-2761.2000.00212.x

[16]   Song, J.Y., Kitamura, S.J., Jung, S.J., Miyadai, T., Tanaka, S., Fukuda, Y., Kim, S.R. and Oh, M.J. (2008) Genetic Variation and Geographic Distribution of Megalocytiviruses. Journal of Microbiology, 46, 29-33.
http://dx.doi.org/10.1007/s12275-007-0184-6

[17]   Ozaki, A., Okamoto, H., Yamada, T., Matuyama, T., Sakai, T., et al. (2010) Linkage Analysis of Resistance to Streptococcus iniae Infection in Japanese Flounder (Paralichthys olivaceus). Aquaculture, 308, S62-S67.
http://dx.doi.org/10.1016/j.aquaculture.2010.07.039

[18]   Das, S. and Sahoo, P.K. (2014) Markers for Selection of Disease Resistance in Fish: A Review. Aquaculture International.
http://dx.doi.org/10.1007/s10499-014-9783-5

[19]   Hamilton, M.B., Pincus, E.L., Fiore, A.D. and Fleischer, R.C. (1999) A Universal Linker and Ligation Procedures for Construction of Genomic DNA Libraries Enriched for Microsatellites. Biotechniques, 27, 500-507.

[20]   Kalinowski, S.T., Taper, M.L. and Marshall, T.C. (2007) Revising How the Computer Program CERVUS Accommodates Genotyping Error Increases Success in Paternity Assignment. Molecular Ecology, 16, 1099-1006.
http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x

[21]   Rousset, F. (2008) GENEPOP’007: A Complete Re-Implementation of the GENEPOP Software for Windows and Linux. Molecular Ecology Notes, 8, 103-106.
http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x

[22]   Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. (1980) Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. American Journal of Human Genetics, 31, 314-331.

[23]   Maureen, B.P., Ovenden, J.R., Broderick, D., Lance, S.L., Hagen, C. and Glenn, T.C. (2009) Fifteen Microsatellite Loci for the Jungle Perch, Kuhlia rupestris. Molecular Ecology Resources, 9, 1467-1469.
http://dx.doi.org/10.1111/j.1755-0998.2009.02735.x

[24]   Chang, Y.M., Sun, X.W., Li, S.W., Zhao, Y.Y., Zhu, X.C. and Liu, H.J. (2005) Isolation of CA/GT Microsatellites from the Paralichthys olivaceus Genome. Journal of Zoological Research, 22, 652-656.

 
 
Top