[1] Bastida, J.M., Alcantara, J.M., Rey, P.J., Vargas, P. and Herrera, C.M. (2010) Extended Phylogeny of Aquilegia: The Biogeographical and Ecological Patterns of Two Simultaneous but Contrasting Radiations. Plant Systematics and Evolution, 284, 171-185.
http://dx.doi.org/10.1007/s00606-009-0243-z
[2] Hodges, S.A. and Arnold, M. (1994) Columbines: A Geographically Widespread Species Flock. Proceedings of the National Academy of Sciences, 91, 5129-5132.
http://dx.doi.org/10.1073/pnas.91.11.5129
[3] Whittall, J.B. and Hodges, S.A. (2007) Pollinator Shifts Drive Increasingly Long Nectar Spurs in Columbine Flowers. Nature, 447, 706-710.
http://dx.doi.org/10.1038/nature05857
[4] Fior, S., Li, M., Oxelman, B., Viola, R., Hodges, S.A., Ometto, L. and Varotto, C. (2013) Spatiotemporal Reconstruction of the Aquilegia Rapid Radiation through Next-Generation Sequencing of Rapidly Evolving cpDNA Regions. New Phytologist, 198, 579-592.
http://dx.doi.org/10.1111/nph.12163
[5] Brunet, J. and Eckert, C.G. (1998) Effect of Floral Morphology and Display on Outcrossing in Blue Columbine, Aquilegia caerulea (Ranunculaceae). Functional Ecology, 12, 596-606. http://dx.doi.org/10.1046/j.1365-2435.1998.00231.x
[6] Fulton, M. and Hodges, S.A. (1999) Isolation between Aquilegia formosa and Aquilegia pubescens. Proceeding of the Royal Society of London B, 266, 2247-2252.
[7] Herlihy, C.R. and Eckert C.G. (2005) Evolution of Self-Fertilization at Geographical Range Margins? A Comparison of Demographic, Floral, and Mating System Variables in Central vs. Peripheral Populations of Aquilegia canadensis (Ranunculaceae). American Journal of Botany, 92, 744-751.
http://dx.doi.org/10.3732/ajb.92.4.744
[8] Brunet, J. and Sweet, H.R. (2006) Impact of Insect Pollinator Group and Floral Display Size on Outcrossing Rate. Evolution, 60, 183-195.
http://dx.doi.org/10.1111/j.0014-3820.2006.tb01102.x
[9] Herlihy, C.R. and Eckert, C.G. (2007) Evolutionary Analysis of a Key Floral Trait and Its Effect on the Mating System in Aquilegia canadensis (Ranunculaceae). Evolution, 61, 1661-1674.
http://dx.doi.org/10.1111/j.1558-5646.2007.00137.x
[10] Brunet, J. (2009) Pollinators of the Rocky Mountain Columbine: Temporal Variation, Functional Groups and Associations with Floral Traits. Annals of Botany, 103, 1567-1578.
http://dx.doi.org/10.1093/aob/mcp096
[11] Brunet, J. and Larson-Rabin, Z. (2012) The Response of Flowering Time to Global Warming in a High-Altitude Plant: The Impact of Genetics and the Environment. Botany, 90, 319-326.
http://dx.doi.org/10.1139/b2012-001
[12] Van Etten, M.L. and Brunet, J. (2013) The Impact of Global Warming on Floral Traits That Affect the Selfing Rate in a High-Altitude Plant. International Journal of Plant Sciences, 174, 1099-1108.
http://dx.doi.org/10.1086/671805
[13] Chase, V.C. and Raven, P.H. (1975) Evolutionary and Ecological Relationships between Aquilegia formosa and A. pubescens (Ranunculaceae), Two Perennial Plants. Evolution, 29, 474-486.
http://dx.doi.org/10.2307/2407260
[14] Kramer, E.M., Holappa, L., BillieGould, M., Jaramillo, A., Setnikov, D. and Santiago, P.M. (2007) Elaboration of B Gene Function to Include the Identity of Novel Floral Organs in the Lower Eudicot Aquilegia. The Plant Cell, 19, 750-766.
http://dx.doi.org/10.1105/tpc.107.050385
[15] Voelckel, C., Borevitz, J.O., Kramer, E.M. and Hodges, S.A. (2010) Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis. PLoS ONE, 5, e9735.
http://dx.doi.org/10.1371/journal.pone.0009735
[16] Kramer, E.M. (2009) Aquilegia: A New Model for Plant Development, Ecology, and Evolution. Annual Review of Plant Biology, 60, 261-277.
[17] Kramer, E.M. and Hodges, S.A. (2010) Aquilegia as a Model System for the Evolution and Ecology of Petals. Philosophical Transactions of the Royal Society B, 365, 477-490.
http://dx.doi.org/10.1098/rstb.2009.0230
[18] Fang, G.C., Blackmon, B.P., Henry, D.C., Staton, M.E., Saski, C.A., Hodges, S.A., Tomkins, J.P. and Luo, H. (2010) Genomic Tools Development for Aquilegia: Construction of a BAC-Based Physical Map. BMC Genomics, 11, 621.
http://dx.doi.org/10.1186/1471-2164-11-621
[19] Yang, J.Y., Counterman, B.A., Eckert, C.G. and Hodges, S.A. (2005) Cross-Species Amplification of Microsatellite loci in Aquilegia and Semiaquilegia (Ranunculaceae). Molecular Ecology Notes, 5, 317-320.
http://dx.doi.org/10.1111/j.1471-8286.2005.00913.x
[20] Gallagher, K.G., Milligan, B.G. and White, P.S. (2004) Isolation and Characterization of Microsatellite DNA Loci in Aquilegia sp. Molecular Ecology Notes, 4, 686-688.
http://dx.doi.org/10.1111/j.1471-8286.2004.00785.x
[21] Li, L.F., Pang, D., Liao, Q.L. and Xiao, H.X. (2011) Genomic and EST Microsatellite Markers for Aquilegia flabellata and Cross-Amplification in A. oxysepala (Ranunculaceae). American Journal of Botany, 98, e213-e215.
http://dx.doi.org/10.3732/ajb.1100057
[22] Brunet, J., Larson-Rabin, Z. and Stewart, C.M. (2012) The Distribution of Genetic Diversity within and among Populations of the Rocky Mountain Columbine: The Impact of Gene Flow, Pollinators, and Mating System. International Journal of Plant Sciences, 174, 1099-1108.
[23] Garrido, J.L., Fenu, G., Mattana, E. and Bacchetta, G. (2012) Spatial Genetic Structure of Aquilegia Taxa Endemic to the Island of Sardinia. Annals of Botany, 109, 953-964.
http://dx.doi.org/10.1093/aob/mcs011
[24] Brunet, J. and Holmquist, K.G.A. (2009) Influence of Distinct Pollinators on Female and Male Reproductive Success in the Rocky Mountain Columbine. Molecular Ecology, 18, 3745-3758.
http://dx.doi.org/10.1111/j.1365-294X.2009.04304.x
[25] da Maia, L.C., Palmieri, D.A., de Sonza, V.Q., Kopp, M.M., de Carvalho, F.I. and de Oliveira, A.C. (2008) SSR Locator: Tool for Simple Sequence Repeat Discovery Integrated with Primer Design and PCR Simulation. International Journal of Plant Genomics, 2008, 412696-412705.
[26] Martins, W.S., Lucas, D.C.S., Neves, K.F.S. and Bertioli, D.J. (2009) WebSat—A Web Software for MicroSatellite Marker Development. Bioinformation, 3, 282-283.
http://dx.doi.org/10.6026/97320630003282
[27] Schuelke, M. (2000) An Economic Method for the Fluorescent Labeling of PCR Fragments. Nature Biotechnology, 18, 233-234.
http://dx.doi.org/10.1038/72708
[28] Zalapa, J., Cuevas, H., Zhu, H., Steffan, S., Senalik, D., Zeldin, E. McCown, B., Harbut, R. And Simon, P. (2012) Using Next-Generation Sequencing Approaches to Isolate Simple Sequence Repeat (SSR) Loci in the Plant Sciences. American Journal of Botany, 99, 193-208.
http://dx.doi.org/10.3732/ajb.1100394
[29] Peakall, R. and Smouse, P.E. (2006) GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Molecular Ecology Notes, 6, 288-295.
http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x
[30] Kalinowski, S.T., Taper, M.L. and Marshall, T.C. (2007) Revising How the Computer Program CERVUS Accommodates Genotyping Error Increases Success in Paternity Assignment. Molecular Ecology, 16, 1099-1006.
http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x
[31] Fu, Y.B., Peterson, G.W., Richards, K.W., Tarn, T.R. and Percy, J.E. (2009) Genetic Diversity of Canadian and Exotic Potato Germplasm Revealed by Simple Sequence Repeat Markers. American Journal of Potato Research, 86, 38-48.
http://dx.doi.org/10.1007/s12230-008-9059-6
[32] Mujaju, C., Sehic, J. and Nybom, H. (2013) Assessment of EST-SSR Markers for Evaluating Genetic Diversity in Watermelon Accessions from Zimbabwe. American Journal of Plant Sciences, 4, 1448-1456.
[33] Yang, J.Y. and Hodges, S.A. (2010) Early Inbreeding Depression Selects for High Outcrossing Rates in Aquilegia formosa and Aquilegia pubescens. International Journal of Plant Sciences, 171, 860-871.
http://dx.doi.org/10.1086/655772
[34] Hamblin, M.T., Warburton, M.L. and Buckler, E.S. (2007) Empirical Comparison of Simple Sequence Repeats and Single Nucleotide Polymorphisms in Assessment of Maize Diversity and Relatedness. PLoS ONE, 2, Article ID: e1367.
http://dx.doi.org/10.1371/journal.pone.0001367
[35] Adam-Blondon, A.F., Roux, C., Claux, D., Butterlin, G., Merdinoglu, D. and This, P. (2004) Mapping 245 SSR Markers on the Vitis vinifera Genome: A Tool for Grape Genetics. Theoretical and Applied Genetics, 109, 1017-1027.
http://dx.doi.org/10.1007/s00122-004-1704-y