AE  Vol.2 No.3 , July 2014
A Review of Agricultural Pesticides Use and the Selection for Resistance to Insecticides in Malaria Vectors
ABSTRACT
Most national malaria control programmes rely extensively on pyrethroid insecticides to control mosquito vectors of this disease. Unfortunately, the intensive use of this class of insecticides both in public health and agriculture has led to its reduced efficacy. The objective of this review was to assess the role of agricultural pesticides use on the development of resistance to insecticides in malaria vectors and the potential impact of this resistance on control activities. We searched library catalogues and public databases for studies that included data on resistance to the major classes of insecticides: organochlorines, carbamates, organophosphates and pyrethroids, in the malaria vectors of Anopheles genera. There is a strong geographical bias in published studies many originating from West African countries. Several studies demonstrate that resistance to pyrethroids is widespread in the major malaria vectors of the Anopheles gambiae and Anopheles funestus complexes. Assessing the impact of insecticide resistance on vector control is complicated owing to the lack of studies into the epidemiological consequences of resistance on the control of malaria and other vector borne diseases.

Cite this paper
Philbert, A. , Lyantagaye, S. and Nkwengulila, G. (2014) A Review of Agricultural Pesticides Use and the Selection for Resistance to Insecticides in Malaria Vectors. Advances in Entomology, 2, 120-128. doi: 10.4236/ae.2014.23019.
References
[1]   WHO (2012) Global Plan for Insecticide Resistance Management in Malaria Vectors. WHO, Geneva.

[2]   Overgaard, H.J. (2006) Malaria Mosquito Resistance to Agricultural Insecticides: Risk Area Mapping in Thailand. International Water Management Institute, Colombo.

[3]   WHO (2006) Pesticides and Their Application—For the Control of Vectors and Pests of Public Health Importance. World Health Organization, Geneva.

[4]   WHO (2013) Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. WHO, Geneva.

[5]   N’Guessan, R., Corbel, V., Akogbeto, M. and Rowland, M. (2007) Reduced Efficacy of Insecticide-Treated Nets and Indoor Residual Spraying for Malaria Control in Pyrethroid Resistance Area, Benin. Emerging Infectious Diseases, 13, 199-206. http://dx.doi.org/10.3201/eid1302.060631

[6]   Yadouleton, A.W., Asidi, A., Djouaka, R.F., Braima, J., Agossou, C.D., et al. (2009) Development of Vegetable Farming: A Cause of the Emergence of Insecticide Resistance in Populations of Anopheles gambiae in Urban Areas of Benin. Malaria Journal, 8, 103. http://dx.doi.org/10.1186/1475-2875-8-103

[7]   Kisinza, W., Kabula, B., Tungu, P., Sindato, C., Mweya, C., et al. (2011) Detection and Monitoring of Insecticide Resistance in Malaria Vectors in Tanzania Mainland. National Institute for Medical Research, Tanzania.

[8]   Diabaté, A., Baldet, T., Chandre, F., Akogbeto, M., Guiguemde, T., et al. (2002) The Role of Agricultural Use of Insecticides in Resistance to Pyrethroids in Anopheles gambiae s.l. in Burkina Faso. American Journal of Tropical Medicine and Hygiene, 67, 617-622.

[9]   Akogbeto, M.C., Djouaka, R.F. and Kinde-Gazard, D.A. (2006) Screening of Pesticide Residues in Soil and Water Samples from Agricultural Settings. Malaria Journal, 5, 22. http://dx.doi.org/10.1186/1475-2875-5-22

[10]   Balkew, M., Ibrahim, M., Koekemoer, L., Brooke, B.D., Engers, H., et al. (2010) Insecticide Resistance in Anopheles arabiensis (Diptera: Culicidae) from Villages in Central, Northern and South West Ethiopia and Detection of kdr Mutation. Parasites & Vectors, 3, 40. http://dx.doi.org/10.1186/1756-3305-3-40

[11]   Dongus, S., Nyika, D., Kannady, K., Mtasiwa, D., Mshinda, H., et al. (2009) Urban Agriculture and Anopheles Habitats in Dar es Salaam, Tanzania. Geospatial Health, 3, 189-210.

[12]   Vanek, M.J., Shoo, B., Mtasiwa, D., Kiama, M., Lindsay, S.W., et al. (2006) Community-Based Surveillance of Malaria Vector Larval Habitats: A Baseline Study in Urban Dar es Salaam, Tanzania. BMC Public Health, 6, 154. http://dx.doi.org/10.1186/1471-2458-6-154

[13]   Muriu, S.M., Muturi, E.J., Shililu, J.I., Mbogo, C.M., Mwangangi, J.M., et al. (2008) Host Choice and Multiple Blood Feeding Behaviour of Malaria Vectors and Other Anophelines in Mwea Rice Scheme, Kenya. Malaria Journal, 7, 43. http://dx.doi.org/10.1186/1475-2875-7-43

[14]   Ranson, H., Abdallah, H., Badolo, A., Guelbeogo, W.M., Kerah-Hinzoumbé, C., et al. (2009) Insecticide Resistance in Anopheles gambiae: Data from the First Year of a Multi-Country Study Highlight the Extent of the Problem. Malaria Journal, 8, 299. http://dx.doi.org/10.1186/1475-2875-8-299

[15]   Matowo, J., Kulkarni, M.A., Mosha, F.W., Oxborough, R.M., Kitau, J.A., et al. (2010) Biochemical Basis of Permethrin Resistance in Anopheles arabiensis from Lower Moshi, North-Eastern Tanzania. Malaria Journal, 9, 193. http://dx.doi.org/10.1186/1475-2875-9-193

[16]   Yadouleton, A., Martin, T., Padonou, G., Chandre, F., Asidi, A., Djogbenou, L., Dabiré, R., Aïkpon, R., Boko, M., Glitho, I. and Akogbeto, M. (2011) Cotton Pest Management Practices and the Selection of Pyrethroid Resistance in Anopheles gambiae Population in Northern Benin. Parasites & Vectors, 4, 60. http://dx.doi.org/10.1186/1756-3305-4-60

[17]   Diabate, A., Baldet, T., Chandre, F., Akogbeto, M., Darriet, F., Brengues, C., Guillet, P., Hemingway, J., Small, G.J. and Hougard, J.M. (2002) The Role of Agricultural Use of Insecticides in Resistance to Pyrethroids in Anopheles gambiae s.l. in Burkina Faso. American Journal of Tropical Medicine and Hygiene, 67, 617-622.

[18]   WHO (2003) Guidelines for Integrated Vector Management. WHO Regional Office for Africa, Harare.

[19]   Van den Berg, H. and Takken, W. (2007) A Framework for Decision-Making in Integrated Vector Management to Prevent Disease. Tropical Medicine and International Health, 12, 1230-1238. http://dx.doi.org/10.1111/j.1365-3156.2007.01905.x

[20]   Karunamoorthi, K. and Sabesan, S. (2013) Insecticide Resistance in Insect Vectors of Disease with Special Reference to Mosquitoes: A Potential Threat to Global Public Health. Health Scope, 2, 4-18. http://dx.doi.org/10.5812/jhs.9840

[21]   Hemingway, J., Hawkes, N.J., McCarroll, L. and Ranson, H. (2004) The Molecular Basis of Insecticide Resistance in Mosquitoes. Insect Biochemistry and Molecular Biology, 34, 653-665.

[22]   Singh, O.P., Dyke, C.L., Das, M.K., Pradhan, S., Bhatt, R.M., et al. (2010) Prescence of Two Alternative kdr-Like Mutations, L1014F and L1014S, and a Novel Mutation, V1010L, in the Voltage Gated Na+ Channel of Anopheles culicifacies from Orissa, India. Malaria Journal, 9, 146.
http://dx.doi.org/10.1186/1475-2875-9-146

[23]   Marcombe, S., Poupardin, R., Darriet, F., Reynaud, S., Bonnet, J., Strode, C., et al. (2009) Exploring the Molecular Basis of Insecticide Resistance in the Dengue Vector Aedes aegypti: A Case Study in Martinique Island (French West Indies). BMC Genomics, 10, 494.

[24]   Singh, O.P., Bali, P., Hemingway, J., Subbarao, K.S., Dash, A.P. and Adak, T. (2009) PCR-Based Methods for the Detection of L1014 kdr Mutation in Anopheles culicifacies sensu lato. Malaria Journal, 8, 154. http://dx.doi.org/10.1186/1475-2875-8-154

[25]   Ranson, H., Jensen, B., Vulule, J.M., Wang, X., Hemingway, J. and Collins, F.H. (2000) Identification of a Point Mutation in the Voltage-Gated Sodium Channel Gene of Kenyan Anopheles gambiae Associated with Resistance to DDT and Pyrethroids. Insect Molecular Biology, 9, 491-497.
http://dx.doi.org/10.1046/j.1365-2583.2000.00209.x

[26]   Martinez-Torres, D., Chandre, F., Williamson, M.S., Darriet, F., Berge, J.B., Devonshire, A.L., Guillet, P., Pasteur, N. and Pauron, D. (1998) Molecular Characterization of Pyrethroid Knockdown Resistance (kdr) in the Major Malaria Vector Anopheles gambiae s.s. Insect Molecular Biology, 7, 179-184.
http://dx.doi.org/10.1046/j.1365-2583.1998.72062.x

[27]   Nkya, T.E., Akhouayri, I., Poupardin, R., Batengana, B., Mosha, F., Magesa, S., Kisinza, W. and David, J.P. (2014) Insecticide Resistance Mechanisms Associated with Different Environments in the Malaria Vector Anopheles gambiae: A Case Study in Tanzania. Malaria Journal, 13, 28.
http://dx.doi.org/10.1186/1475-2875-13-28

[28]   Scott, J.G. (1996) Cytochrome P450 Monooxygenase-Mediated Resistance to Insecticides. Journal of Pesticide Sci- ence, 21, 241-245. http://dx.doi.org/10.1584/jpestics.21.241

[29]   Zhong, D.B., Chang, X.L., Zhou, G.F., He, Z.B., Fu, F.Y., Yan, Z.T., et al. (2013) Relationship between Knockdown Resistance, Metabolic Detoxification and Organismal Resistance to Pyrethroids in Anopheles sinensis. PLoS ONE, 8, Article ID: e55475. http://dx.doi.org/10.1371/journal.pone.0055475

[30]   Overgaard, H.J., Sandve, S.R. and Suwonkerd, W. (2005) Evidence of Anopheline Mosquito Resistance to Agrochemicals in Northern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 4, 148-153.

[31]   Anto, F., Asoala, V., Anyorigiya, T., Oduro, A., Adjuik, M., Owusu-Agyei, S., Dery, D., Bimi, L. and Hodgson, A. (2009) Insecticide Resistance Profiles for Malaria Vectors in the Kassena-Nankana District of Ghana. Malaria Journal, 8, 81. http://dx.doi.org/10.1186/1475-2875-8-81

[32]   Antonio-Nkondjio, C., Fossog, B.T., Ndo, C., Djantio, B.M., Togouet, S.Z., Awono-Ambene, P., Costantini, C., Wondji, C.S. and Ranson, H. (2011) Anopheles gambiae Distribution and Insecticide Resistance in the Cities of Douala and Yaounde (Cameroon): Influence of Urban Agriculture and Pollution. Malaria Journal, 10, 154. http://dx.doi.org/10.1186/1475-2875-10-154

[33]   Awolola, T.S., Oduola, A.O., Oyewole, I.O., Obansa, J.B., Amajoh, C.N., Koekemoer, L.L. and Coetzee, M. (2007) Dynamics of Knockdown Pyrethroid Insecticide Resistance Alleles in a Field Population of Anopheles gambiae s.s. in Southwestern Nigeria. Journal of Vector Borne Diseases, 44, 181-188.

[34]   Mahande, A.M., Dusfour, I., Matias, J.R. and Kweka, E.J. (2012) Knockdown Resistance, rdl Alleles, and the Annual Entomological Inoculation Rate of Wild Mosquito Populations from Lower Moshi, Northern Tanzania. Journal of Global Infectious Disease, 4, 114-119. http://dx.doi.org/10.4103/0974-777X.96776

[35]   Kulkarni, M.A., Rowland, M., Alifrangis, M., Mosha, F.W., Matowo, J., et al. (2006) Occurrence of the Leucine-to- Phenylalanine Knockdown Resistance (kdr) Mutation in Anopheles arabiensis Populations in Tanzania, Detected by a Simplified High-Throughput SSOP ELISA Method. Malaria Journal, 5, 56. http://dx.doi.org/10.1186/1475-2875-5-56

[36]   Chandre, F., Darriet, F., Manga, L., Akogbeto, M., Faye, O., Mouchet, J. and Guillet, P. (1999) Status of Pyrethroid Resistance in Anopheles gambiae sensu lato. Bulletin of World Health Organisation, 77, 230-234.

[37]   Etang, J., Fondjo, E., Chandre, F., Morlais, I., Brengues, C., Nwane, P., Chouaibou, M., Ndjemai, H. and Simard, F. (2006) First Report of Knockdown Mutations in the Malaria Vector Anopheles gambiae from Cameroon. American Journal of Tropical Medicine and Hygiene, 74, 795-797.

[38]   Verhaeghen, K., Van Bortel, W., Roelants, P., Backeljau, T. and Coosemans, M. (2006) Detection of the East and West African kdr Mutation in Anopheles gambiae and Anopheles arabiensis from Uganda Using a New Assay Based on FRET/Melt Curve Analysis. Malaria Journal, 5, 16. http://dx.doi.org/10.1186/1475-2875-5-16

[39]   Stump, A.D., Atieli, F.K., Vulule, J.M. and Besansky, N.J. (2004) Dynamics of the Pyrethroid Knockdown Resistance Allele in Western Kenyan Populations of Anopheles gambiae in Response to Insecticide-Treated Bed Net Trials. American Journal of Tropical Medicine and Hygiene, 70, 591-596.

[40]   Wondji, C.S., Coleman, M., Kleinschmidt, I., Mzilahowa, H., Irving, H., Ndula, M., Rehman, A., Morgan, J., Barnes, K.G. and Hemingway, J. (2012) Impact of Pyrethroid Resistance on Operational Malaria Control in Malawi. Proceedings of the National Academy of Sciences of the United States of America, 109, 19063-19070.

[41]   N’Guessan, R., Corbel, V., Akogbeto, M. and Rowland, M. (2007) Reduced Efficacy of Insecticide-Treated Nets and Indoor Residual Spraying for Malaria Control in Pyrethroid Resistance Area, Benin. Emerging Infectious Diseases, 13, 199-206. http://dx.doi.org/10.3201/eid1302.060631

[42]   Okumu, F.O. and Moore, S.J. (2011) Combining Indoor Residual Spraying and Insecticide-Treated Nets for Malaria Control in Africa: A Review of Possible Outcomes and an Outline of Suggestions for the Future. Malaria Journal, 10, 208. http://dx.doi.org/10.1186/1475-2875-10-208

[43]   Protopopoff, N., Verhaeghen, K., Van Bortel, W., Roelants, P., Marcotty, T., Baza, D., D’Alessandro, U. and Coosemans, M. (2008) A Significant Increase in kdr in Anopheles gambiae Is Associated with an Intensive Vector Control Intervention in Burundi Highlands. Tropical Medicine and International Health, 13, 1479-1487. http://dx.doi.org/10.1111/j.1365-3156.2008.02164.x

[44]   Kelly-Hope, L., Ranson, H. and Hemingway, J. (2008) Lessons from the Past: Managing Insecticide Resistance in Malaria Control and Eradication Programmes. The Lancet Infectious Disease, 8, 387-389. http://dx.doi.org/10.1016/S1473-3099(08)70045-8

[45]   Kumar, S., Christophides, G.K., Cantera, R., Charles, B., Han, Y.S., et al. (2003) The Role of Reactive Oxygen Species on Plasmodium Melanotic Encapsulation in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, 100, 14139-14144.

[46]   Vontas, J., Blass, C., Koutsos, A.C., David, J.P., Kafatos, F.C., Louis, C., Hemingway, J., Christophides, G.K. and Ranson, H. (2005) Gene Expression in Insecticide Resistant and Susceptible Anopheles Gambiae Strains Constitutively or after Insecticide Exposure. Insect Molecular Biology, 14, 509-521.

[47]   Vontas, J., David, J.P., Nikou, D., Hemingway, J., Christophides, G.K., Louis, C. and Ranson, H. (2007) Transcriptional Analysis of Insecticide Resistance in Anopheles stephensi Using Cross-Species Microarray Hybridization. Insect Molecular Biology, 16, 315-324.
http://dx.doi.org/10.1111/j.1365-2583.2007.00728.x

[48]   McCarroll, L. and Hemingway, J. (2002) Can Insecticide Resistance Status Affect Parasite Transmission in Mosquitoes? Insect Biochemistry and Molecular Biology, 32, 1345-1351.
http://dx.doi.org/10.1016/S0965-1748(02)00097-8

[49]   McCarroll, L., Paton, M.G., Karunaratne, S.H.P.P., Jayasuryia, H.T.R., Kalpage, K.S.P. and Hemingway, J. (2000) Insecticides and Mosquitoborne Disease. Nature, 407, 961-962.
http://dx.doi.org/10.1038/35039671

[50]   Vontas, J.G., Small, G.J. and Hemingway, J. (2001) Glutathione S-Transferases as Antioxidant Defence Agents Confer Pyrethroid Resistance in Nilaparvata lugens. Biochemical Journal, 357, 65-72.
http://dx.doi.org/10.1042/0264-6021:3570065

[51]   Vontas, G.J., McCarroll, L., Karunaratine, S.H.P.P., Louis, C., Hurd, H. and Hemingway, J. (2004) Does Environmental Stress Affect Insect-Vectored Parasite Transmission? Physiological Entomology, 29, 210-213. http://dx.doi.org/10.1111/j.0307-6962.2004.00410.x

[52]   Hemingway, J. (2000) The Molecular Basis of Two Contrasting Mechanisms of Insecticide Resistance. Insect Biochemistry and Molecular Biology, 30, 1009-1015.
http://dx.doi.org/10.1016/S0965-1748(00)00079-5

 
 
Top