[1] Finetti, B.D. (1957) Su un impostazione alternativa della teoria collectiva del rischio. Transactions of the 15th International Congress of Applied Probability, 41, 117-130.
[2] Gerber, H.U. and Shiu, E.S.W. (1998) On the Time Value of Ruin. North American Actuarial Journal, 2, 48-78.
http://dx.doi.org/10.1080/10920277.1998.10595671
[3] Lin, X.S., Willmot, G.E. and Drekic, S. (2003) The Classical Risk Model with a Constant Dividend Barrier: Analysis of the Gerber-Shiu Discounted Penalty Function. Insurance: Mathematics and Economics, 33, 551-566.
http://dx.doi.org/10.1016/j.insmatheco.2003.08.004
[4] Gerber, H.U. and Shiu, E.S.W. (2004) Optimal Dividends: Analysis with Brownian Motion. North American Actuarial Journal, 8, 1-20.
http://dx.doi.org/10.1080/10920277.2004.10596125
[5] Jeanblang-Picque, M. and Shiryaev, A.N. (1995) Optimization of the Flow of Dividends. Russian Mathematical Surveys, 20, 257-277.
http://dx.doi.org/10.1070/RM1995v050n02ABEH002054
[6] Asmussen, S. and Taksar, M. (1997) Controlled Diffusion Models for Optimal Dividend Pay-Out. Insurance: Mathematics and Economics, 20, 1-15.
http://dx.doi.org/10.1016/S0167-6687(96)00017-0
[7] Gerber, H.U. and Shiu, E.S.W. (2006) On Optimal Dividend Strategy in the Compound Poisson Model. North American Actuarial Journal, 10, 76-93.
http://dx.doi.org/10.1080/10920277.2006.10596249
[8] Gerber, H.U. and Shiu, E.S.W. (2006) On Optimal Dividends: From Reflection to Refraction. Journal of Computational and Applied Mathematics, 186, 4-22.
http://dx.doi.org/10.1016/j.cam.2005.03.062
[9] Lin, X.S. and Pavlova, K.P. (2006) The Compound Poisson Risk Model with a Threshold Dividend Strategy. Insurance: Mathematics and Economics, 38, 57-80.
http://dx.doi.org/10.1016/j.insmatheco.2005.08.001
[10] Wan, N. (2007) Dividend Payments with a Threshold Strategy in the Compound Poisson Risk Model Perturbed by Diffusion. Insurance: Mathematics and Economics, 40, 509-523.
http://dx.doi.org/10.1016/j.insmatheco.2006.08.002
[11] Ng, A.C.Y. (2009) On a Dual Model with a Dividend Threshold. Insurance: Mathematics and Economics, 44, 315-324.
http://dx.doi.org/10.1016/j.insmatheco.2008.11.011
[12] Fang, Y. and Wu, R. (2008) Optimal Dividends in the Brownian Motion Risk Model with Interest. Journal of Computational and Applied Mathematics, 229, 145-151.
http://dx.doi.org/10.1016/j.cam.2008.10.021
[13] Chi, Y.C. and Lin, X.S. (2011) On the Threshold Dividend Strategy for a Generalized Jump-Diffusion Risk Model. Insurance: Mathematics and Economics, 48, 326-337.
http://dx.doi.org/10.1016/j.insmatheco.2010.11.006
[14] Yin, C.C. and Wen, Y.Z. (2013) An Extension of Paulsen-Gjessing’s Risk Model with Stochastic Return on Investments. Insurance: Mathematics and Economics, 52, 469-476.
http://dx.doi.org/10.1016/j.insmatheco.2013.02.014
[15] Albrecher, H. and Hartinger, J. (2007) A Risk Model with Multi-Layer Dividend Strategy. North American Actuarial Journal, 11, 43-64.
http://dx.doi.org/10.1080/10920277.2007.10597447
[16] Lin, X.S. and Sendova, K.P. (2008) The Compound Poisson Risk Model with Multiple Threshold. Insurance: Mathematics and Economics, 42, 617-627.
http://dx.doi.org/10.1016/j.insmatheco.2007.06.008
[17] Jiang, W.Y., Yang, Z.J. and Li, X.P. (2012) The Discounted Penalty Function with Multi-Layer Dividend Strategy in the Phase-Type Risk Model. Insurance: Mathematics and Economics, 82, 1358-1366.
[18] Ng, A.C.Y. (2010) On the Upcrossing and Downcrossing Probabilities of a Dual Risk Model with Phase-Type Gains. Astin Bulletin, 40, 281-306.
http://dx.doi.org/10.2143/AST.40.1.2049230
[19] Wang, C.W., Yin, C.C. and Li, E.Q. (2010) On the Classical Risk Model with Credit and Debit Interests under Absolute Ruin. Statistics and Probability Letter, 80, 427-436.
http://dx.doi.org/10.1016/j.spl.2009.11.020
[20] Liu, D.H. and Liu, Z.M. (2011) The Perturbed Compound Poisson Risk Model with Linear Dividend Barrier. Journal of Computational and Applied Mathematics, 235, 2357-2363.
http://dx.doi.org/10.1016/j.cam.2010.10.034
[21] Gao, S. and Liu, Z.M. (2010) The Perturbed Compound Poisson Risk Model with Constant Interest and a Threshold Dividend Strategy. Journal of Computational and Applied Mathematics, 233, 2181-2188.
http://dx.doi.org/10.1016/j.cam.2009.10.004