Application of Intra-Particle Combustion Model for Iron Ore Sintering Bed

References

[1] I. Muchi and J. Higuchi, “Theoretical Analysis of the Operation of Sintering,” Iron and Steel, Vol. 56, No. 3, March 1970, pp. 371-381.

[2] R. W. Young, “Dynamic Mathematical Model of (Iron-Ore) Sintering Process,” Ironmaking and Steelmaking, Vol. 4, No. 6, 1977, pp. 321-328.

[3] M. J. Cumming and J. A. Thurlby, “Developments in Modeling and Simulation of Iron Ore Sintering,” Ironmakingand Steelmaking, Vol. 17, No. 4, 1990, pp. 245- 254.

[4] F. Patisson, J. P. Bellot, D. Ablitzer, E. Marli, C. Dulcy and J. M. Steiler, “Mathematical Modeling of Iron Ore Sintering Process,” Ironmaking and Steelmaking, Vol. 18, No. 2, 1991, pp. 89-95.

[5] N. K. Nath, A. J. Silva and N. Chakraborti, “Dynamic Process Modeling of Iron Ore Sintering,” Steel Research, Vol. 68, No. 7, 1997, pp. 285-292.

[6] J. Mitterlehner, G. Loeffler and F. Winter, “Modeling and Simulation of Heat front Propagation in the Iron Ore Sintering Process,” ISIJ International, Vol. 44, No. 1, 2004, pp. 11-20. doi:10.2355/isijinternational.44.11

[7] W. Yang, C. Ryu, S. Choi, E. Choi, D. Lee and W. Huh, “Modeling of Combustion and Heat Transfer in an Iron Ore Sintering Bed with Considerations of Multiple Solid Phases,” ISIJ Interna-tional, Vol. 44, No. 3, 2004, pp. 492-499. doi:10.2355/isijinternational.44.492

[8] S. Komarov, H. Shi-bata, N. Hayashi and E. Kasai, “Numerical and Experimental Investigation on Heat Propagation through Composite Sinter Bed with Non-Uniform Voidage: Part 1 Mathematical Model and Its Experimental Verification,” Journal of Iron and Steel Research, Interantional, Vol. 17, No. 10, 2010, pp. 1-7.

[9] A. Dziugys and B. Peters, “An Approach to Simulate the Motion of Spherical and Non-Spherical Fuel Particles in Combustion Chambers,” Granular Matter, Vol. 3, No. 4, 2001, pp. 231-266. doi:10.1007/PL00010918

[10] J. C. Wurzenberger, S. Wallner and H. Raupenstrauch, “Thermal Conversion of Biomass: Comprehensive Reactor and Particle Modeling,” AIChE Jour-nal, Vol. 48, No. 10, October 2002, pp. 2398-2411.
doi:10.1002/aic.690481029

[11] R. Johansson, H. Thunman and B. Leckner, “Influence of Intraparticle Gradients in Mod-eling of Fixed Bed Combustion,” Combustion and Flame, Vol. 149, No. 1, April 2007, pp. 49-62.
doi:10.1016/j.combustflame.2006.12.009

[12] W. Yang, C. Ryu, S. Choi, E. Choi, D. Ri and W. Huh, “Mathematical Model of Thermal Process in an Iron Ore Sintering Bed,” Met-als and Materials International, Vol. 10, No. 5, 2004, pp. 493-500. doi:10.1007/BF03027355

[13] F. D. Skinner and L. D. Smoot, “Pulverized-Coal Combustion and Gasification,” Noyes Publications, Park Ridge, 1984.

[14] M. L. Hobbs, P. T. Radulovic and L. D. Smoot, “Combustion and Gasification of Coals in Fixed-Beds,” Progress in Energy and Combustion Science, Vol. 19, No. 6, 1993, pp. 505-586. doi:10.1016/0360-1285(93)90003-W

[15] N. Oyama, T. Hi-guchi, S. Machida, H. Sato and K. Takeda, “Effect of High-Phosphorous Iron Ore Distribution in Quasi-Particle on Melt Fluidity and Sinter Bed Permeability during Sintering,” ISIJ Intermational, Vol. 49, No. 5, 2009, pp. 650-658.
doi:10.2355/isijinternational.49.650

[16] T. Jerzy, “Coal Combust,” Krieger Publishing, Malabar, 1994.

[17] J. Song, C. Jeon and A. Boehman, “Impact of Oxygen Diffusion on the Combustion Rate of in-Bed Soot Particles,” Energy and Fuels, Vol. 24, No. 4, 2010, pp. 2418- 2428. doi:10.1021/ef900692m

[18] E. Kasai, W. J. Rankin and J. F. Gannon, “The Effect of Raw Mixture Properties on Bed Per-meability during Sintering,” ISIJ International, Vol. 29, No. 1, 1989, pp. 33- 42. doi:10.2355/isijinternational.29.33